Patents by Inventor Malika Boualleg

Malika Boualleg has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180154340
    Abstract: A catalyst comprising a calcined oxide matrix which is mainly alumina and an active phase comprising nickel, said active phase being at least partially co-mixed within said calcined oxide matrix which is mainly alumina, the nickel content being in the range 5% to 65% by weight of said element with respect to the total mass of catalyst, said active phase not comprising any metal from group VIB, the nickel particles having a diameter of less than 15 nm, said catalyst having a median mesopore diameter in the range 12 nm to 25 nm, a median macropore diameter in the range 50 to 300 nm, a mesopore volume, measured by mercury porosimetry, of 0.40 mL/g or more and a total pore volume, measured by mercury porosimetry, of 0.45 mL/g or more. The process for the preparation of said catalyst, and its use in a hydrogenation process.
    Type: Application
    Filed: June 9, 2015
    Publication date: June 7, 2018
    Applicant: IFP Energies nouvelles
    Inventors: Malika BOUALLEG, Anne-Claire DUBREUIL, Emily MAILLE, Cecile THOMAZEAU
  • Publication number: 20180147563
    Abstract: A catalyst comprises an active phase constituted by palladium, and a porous support comprising at least one refractory oxide selected from the group constituted by silica, alumina and silica-alumina, in which: the palladium content in the catalyst is in the range 0.0025% to 1% by weight with respect to the total weight of catalyst; at least 80% by weight of the palladium is distributed in a crust at the periphery of the porous support, the thickness of said crust being in the range 25 to 450 ?m; the specific surface area of the porous support is in the range 70 to 160 m2/g; the metallic dispersion D of the palladium is less than 20%.
    Type: Application
    Filed: November 28, 2017
    Publication date: May 31, 2018
    Applicant: IFP Energies Nouvelles
    Inventors: Malika BOUALLEG, Priscilla AVENIER
  • Publication number: 20180147564
    Abstract: A catalyst comprises an active phase constituted by palladium, and a porous support comprising at least one refractory oxide selected from the group constituted by silica, alumina and silica-alumina, in which: the palladium content in the catalyst is in the range 0.0025% to 1% by weight with respect to the total weight of catalyst; at least 80% by weight of the palladium is distributed in a crust at the periphery of the porous support, the thickness of said crust being in the range 25 to 500 ?m; the specific surface area of the porous support is in the range 1 to 50 m2/g; the metallic dispersion D of the palladium is less than 20%.
    Type: Application
    Filed: November 29, 2017
    Publication date: May 31, 2018
    Applicant: IFP Energies nouvelles
    Inventors: Malika BOUALLEG, Priscilla AVENIER
  • Publication number: 20180021754
    Abstract: A process for the preparation of an alumina in the form of beads with a sulphur content in the range 0.001% to 1% by weight and a sodium content in the range 0.001% to 1% by weight with respect to the total mass of said beads is described, said beads being prepared by shaping an alumina gel having a high dispersibility by drop coagulation. The alumina gel is itself prepared using a specific precipitation preparation process in order to obtain at least 40% by weight of alumina with respect to the total quantity of alumina formed at the end of the gel preparation process right from the first precipitation step, the quantity of alumina formed at the end of the first precipitation step possibly even reaching 100%. The invention also concerns the use of alumina beads as a catalyst support in a catalytic reforming process.
    Type: Application
    Filed: December 16, 2015
    Publication date: January 25, 2018
    Applicant: IFP Energies nouvelles
    Inventors: Malika BOUALLEG, Aurelie DANDEU
  • Publication number: 20170259249
    Abstract: A supported catalyst having a calcined, predominantly aluminium, oxide support and an active phase of 5 to 65% by weight nickel with respect to the total mass of the catalyst, said active phase having no group VIB metal, the nickel particles having a diameter less than or equal to 20 nm, said catalyst having a mesopore median diameter greater than or equal to 14 nm, a mesopore volume measured by mercury porosimetry greater than or equal to 0.45 mL/g, a total pore volume measured by mercury porosimetry greater than or equal to 0.45 mL/g, a macropore volume less than 5% of the total pore volume, said catalyst being in the form of grains having an average diameter comprised between 0.5 and 10 mm. The invention also relates to the process for the preparation of said catalyst and the use thereof in a hydrogenation process.
    Type: Application
    Filed: August 21, 2015
    Publication date: September 14, 2017
    Applicant: IFP Energies Nouvelles
    Inventors: Malika BOUALLEG, Anne-Claire DUBREUIL, Emily MAILLE, Cecile THOMAZEAU
  • Patent number: 9669387
    Abstract: The present invention concerns spheroidal alumina particles, catalysts comprising such particles as a support and a process for the production of spheroidal alumina particles, comprising the following steps: a) preparing a suspension comprising water, an acid and at least one boehmite powder for which the ratio of the crystallite dimensions in the [020] and [120] directions obtained using the Scherrer X-ray diffraction formula is in the range 0.7 to 1; b) adding a pore-forming agent, a surfactant and optionally water, or an emulsion comprising at least one pore-forming agent, a surfactant and water to the suspension of step a); c) mixing the suspension obtained in step b); d) shaping the spheroidal particles by the oil-drop method using the suspension obtained in step c); e) drying the particles obtained in step d); f) calcining the particles obtained in step e).
    Type: Grant
    Filed: November 16, 2012
    Date of Patent: June 6, 2017
    Assignee: IFP ENERGIES NOUVELLES
    Inventors: Sylvie Lacombe, Priscilla Avenier, Malika Boualleg, Delphine Bazer-Bachi, Patrick Euzen, Joseph Lopez
  • Publication number: 20170151555
    Abstract: A method for preparing a porous inorganic material by at least: a) reaction of a mixture of one precursor of the oxide of a metal X in solution and a precursor of the oxide of a metal Y at a temperature of between 30 and 70° C., X and Y being, independently aluminum, cobalt, indium, molybdenum, nickel, silicon, titanium, zirconium, zinc, iron, copper, manganese, gallium, germanium, phosphorus, boron, vanadium, tin, lead, hafnium, niobium, yttrium, cerium, gadolinium, tantalum, tungsten, antimony, europium or neodymium; b) mixing of the mixture obtained at the end of a) at a temperature of between 80 and 150° C., the mixing period being adjusted so as to obtain a paste that exhibits a fire loss of between 20% by weight and 90% by weight; c) shaping of the porous inorganic material; a) to c) being performed within an extruder.
    Type: Application
    Filed: June 30, 2015
    Publication date: June 1, 2017
    Applicant: IFP Energies nouvelles
    Inventors: Malika BOUALLEG, Delphine BAZER-BACHI, Alexandra CHAUMONNOT, Laetitia ASSIE
  • Publication number: 20170137724
    Abstract: There is described a hydroprocessing process of at least one gas oil cut having a weighted mean temperature (TMP) between 240° C. and 350° C. using a catalyst comprising at least one metal of the group VIB and/or at least one metal of the group VIII of the periodic classification and a support comprising an amorphous mesoporous alumina having a connectivity (Z) greater than 2.7, the hydroprocessing process operating at a temperature between 250° C. and 400° C., at a total pressure between 2 MPa and 10 MPa with a ratio of hydrogen volume to volume of hydrocarbon-containing feedstock between 100 and 800 litres per litre and at an Hourly Volume Rate (HVR) which is defined by the ratio of the volume flow rate of liquid hydrocarbon-containing feedstock to volume of catalyst fed into the reactor between 1 and 10 h?1.
    Type: Application
    Filed: June 9, 2015
    Publication date: May 18, 2017
    Applicant: IFP Energies nouvelles
    Inventors: Malika BOUALLEG, Elodie DEVERS, Bertrand GUICHARD
  • Publication number: 20170137725
    Abstract: Mesoporous and macroporous hydroconversion catalyst: a predominantly calcined alumina oxide matrix; a hydrogenating-dehydrogenating active phase with at least one VIB metal, optionally at least one VIII metal, optionally phosphorus, said active phase being at least partly co-mixed in said predominantly calcined alumina oxide matrix. Preparation process for a residue hydroconversion/hydrotreating catalyst by co-mixing of the active phase with a particular alumina. Use of the catalyst in hydrotreating processes, in particular hydrotreating of heavy feedstocks.
    Type: Application
    Filed: June 9, 2015
    Publication date: May 18, 2017
    Applicant: IFP ENERGIES NOUVELLES
    Inventors: Malika BOUALLEG, Bertrand GUICHARD
  • Publication number: 20170129781
    Abstract: The invention concerns a process for the preparation of an amorphous mesoporous and macroporous alumina, comprising at least one step for dissolving an acidic precursor of aluminium, a step for adjusting the pH by adding at least one basic precursor to the suspension obtained in step a), a step for co-precipitation of the suspension obtained at the end of step b) by adding at least one basic precursor and at least one acidic precursor to the suspension, a filtration step, a drying step, a shaping step and a heat treatment step. The invention also concerns an amorphous mesoporous and macroporous alumina with a bimodal pore structure having: a specific surface area SBET of more than 100 m2/g; a median mesopore diameter, by volume determined by mercury intrusion porosimetry, of 18 nm or more; a median macropore diameter, by volume determined by mercury intrusion porosimetry, in the range 100 to 1200 nm, limits included; a mesopore volume, as measured by mercury intrusion porosimetry, of 0.
    Type: Application
    Filed: June 9, 2015
    Publication date: May 11, 2017
    Applicant: IFP ENERGIES NOUVELLES
    Inventors: Malika BOUALLEG, Celine BOUVRY
  • Publication number: 20170130142
    Abstract: A description is given of a process for hydrotreatment of at least one hydrocarbon feedstock having a weighted average temperature (WAT) of more than 380° C. using at least one catalyst containing at least one metal from Group VIB and/or at least one metal from Group VIII of the periodic table and a support containing an amorphous mesoporous alumina having a connectivity (Z) of more than 2.7, said hydrotreatment process operating at a temperature of between 250° C. and 430° C., at a total pressure of between 4 MPa and 20 MPa with a ratio of volume of hydrogen to volume of hydrocarbon feedstock of between 200 and 2 000 litres per litre and at an Hourly Volume Velocity (HVV) defined by the ratio of the volume flow of liquid hydrocarbon feedstock to the volume of catalyst fed into the reactor of between 0.5 and 5 h?1.
    Type: Application
    Filed: June 9, 2015
    Publication date: May 11, 2017
    Applicant: IFP Energies nouvelles
    Inventors: Malika BOUALLEG, Antoine HUGON
  • Publication number: 20170128912
    Abstract: The invention relates to a supported catalyst that comprises an oxide substrate that is for the most part calcined aluminum and an active phase that comprises nickel, with the nickel content being between 5 and 65% by weight of said element in relation to the total mass of the catalyst, with said active phase not comprising a metal from group VIB, the nickel particles having a diameter that is less than or equal to 20 nm, said catalyst having a median mesopore diameter of between 8 nm and 25 nm, a median macropore diameter of greater than 200 nm, a mesopore volume that is measured by mercury porosimetry that is greater than or equal to 0.30 mL/g, and a total pore volume that is measured by mercury porosimetry that is greater than or equal to 0.34 mL/g. The invention also relates to the method for preparation of said catalyst and its use in a hydrogenation method.
    Type: Application
    Filed: June 9, 2015
    Publication date: May 11, 2017
    Applicant: IFP Energies nouvelles
    Inventors: Malika BOUALLEG, Anne-Claire DUBREUIL, Emily MAILLE, Cecile THOMAZEAU
  • Publication number: 20170120224
    Abstract: The invention concerns a catalyst comprising a calcined oxide matrix which is mainly alumina and an active phase comprising nickel, said active phase being at least partially co-mixed within said calcined oxide matrix which is mainly alumina, the nickel content being in the range 5% to 65% by weight of said element with respect to the total mass of catalyst, said active phase not comprising metal from group VIB, the nickel particles having a diameter of less than 15 nm, said catalyst having a median mesopore diameter in the range 8 nm to 25 nm, a median macropore diameter of more than 300 nm, a mesopore volume, measured by mercury porosimetry, of 0.30 mL/g or more and a total pore volume, measured by mercury porosimetry, of 0.34 mL/g or more. The invention also concerns the process for the preparation of said catalyst, and its use in a hydrogenation process.
    Type: Application
    Filed: June 9, 2015
    Publication date: May 4, 2017
    Applicant: IFP Energies nouvelles
    Inventors: Malika BOUALLEG, Anne-Claire DUBREUIL, Emily MAILLE, Cecile THOMAZEAU
  • Publication number: 20170121180
    Abstract: An amorphous mesoporous alumina having a connectivity (Z) greater than 2.7 is described. The present invention also relates to the process for preparing the said alumina, comprising at least one precipitation step of at least one aluminium salt, at least one heating step of the suspension obtained, a thermal treatment step to form the alumina gel, a gentle drying step or spray drying step, a moulding step of the powder obtained, and a final thermal treatment step in order to obtain the alumina.
    Type: Application
    Filed: June 9, 2015
    Publication date: May 4, 2017
    Applicant: IFP Energies Nouvelles
    Inventors: Malika BOUALLEG, Celine BOUVRY
  • Publication number: 20170121612
    Abstract: Process of preparing hydroconversion catalyst comprising: a calcined, predominantly alumina, oxide support; a hydrogenating-dehydrogenating active phase comprising group VIB metal, optionally group VIII metal, optionally phosphorus, the catalyst having: specific surface area ?100 m2/g, total pore volume ?0.75 ml/g, median mesopore diameter by volume ?18 nm, mesopore volume ?0.65 ml/g, macropore volume 15-40% of total pore volume; comprising: a) dissolving acidic aluminium precursor; b) adjusting pH with basic precursor; c) co-precipitating acidic and basic precursors, at least one containing aluminium, to form suspension of alumina gel with a targeted alumina concentration; d) filtration; e) drying to a powder; f) forming; g) thermal treatment to an alumina oxide support; h) impregnating of the hydrogenating-dehydrogenating active phase on the alumina oxide support. Catalyst prepared by this process and use of this catalyst for hydrotreating or hydroconverting heavy hydrocarbon feedstocks.
    Type: Application
    Filed: June 9, 2015
    Publication date: May 4, 2017
    Applicant: IFP Energies nouvelles
    Inventors: Malika BOUALLEG, Bertrand GUICHARD
  • Publication number: 20170120228
    Abstract: The invention relates to the preparation of a catalyst containing: a mainly aluminium oxide calcined support; a hydro-dehydrogenating active phase containing at least one metal of group VIB, the process including: a) a first precipitation step of at least one basic precursor and at least one acidic precursor, b) a heating step, c) a second precipitation step by addition to the suspension of at least one basic precursor and at least one acidic precursor, d) a filtration step; e) a drying step, f) a moulding step, g) a heat treatment step; h) an impregnation step of the hydro-dehydrogenating active phase on the support obtained in the step g).
    Type: Application
    Filed: June 9, 2015
    Publication date: May 4, 2017
    Applicant: IFP Energies nouvelles
    Inventors: Malika BOUALLEG, Bertrand GUICHARD
  • Publication number: 20170121181
    Abstract: A novel alumina gel is described having an elevated dispersibility index, and in particular a dispersibility index greater than 70%, a crystallite size between 1 and 35 nm, and a sulphur content between 0.001% and 2% by weight, and a sodium content between 0.001% and 2% by weight, the weight percentages being expressed in relation to the total mass of alumina gel. The present invention also discloses the method for preparing said gel comprising at least one step of precipitating at least one aluminium salt, at least one step of heating the suspension obtained and a final heat treatment step for forming the alumina gel.
    Type: Application
    Filed: June 9, 2015
    Publication date: May 4, 2017
    Applicant: IFP Energies nouvelles
    Inventors: Malika BOUALLEG, Celine Bouvry, Patrick EUZEN
  • Publication number: 20170120229
    Abstract: A hydroconversion catalyst with a bimodal pore structure: an oxide matrix predominantly of calcined aluminium; a hydro-dehydrogenative active phase of at least one group VIII metal being at least partly commixed within the said oxide matrix mainly made up of calcined aluminium, an SBET specific surface greater than 100 m2/g, a mesoporous median diameter in volume between 12 and 25 nm inclusive, a macroporous median diameter in volume between 250 and 1500 nm inclusive, a mesoporous volume as measured by mercury intrusion porosimeter greater than or equal to 0.55 ml/g and a total measured pore volume by mercury porosimetry greater than or equal to 0.70 ml/g; a method for preparing a residue catalyst for hydroconversion/hydroprocessing by commixing the active phase with a particular alumina, the use of the catalyst in hydroproces sing, including hydroproces sing heavy feeds.
    Type: Application
    Filed: June 9, 2015
    Publication date: May 4, 2017
    Applicant: IFP Energies Nouvelles
    Inventors: Malika BOUALLEG, Bertrand GUICHARD
  • Publication number: 20170101324
    Abstract: An amorphous mesoporous alumina with a median mesopore diameter by volume of 16 nm or more, a mesopore volume of 0.5 mL/g or more, and a total pore volume of more than 0.75 mL/g. A process for preparing said alumina, comprising: a) precipitating a basic precursor and an acidic precursor, at least one of which comprises aluminium, at a pH of 8.5 to 10.5, a temperature of 20° C. to 90° C. and for 2 minutes to 30 minutes, with a state of advance of 5% to 13%; b) heating the suspension; c) a second precipitating by adding another basic precursor and acidic precursor, at least one of which comprises aluminium, at a pH of 8.5 to 10.5, a temperature of 40° C. to 90° C. and for 2 to 50 minutes, with a state of advance of 87% to 95%; d) filtration; e) drying; f) shaping; g) heat treatment.
    Type: Application
    Filed: June 9, 2015
    Publication date: April 13, 2017
    Applicant: IFP Energies Nouvelles
    Inventors: Malika BOUALLEG, Celine BOUVRY
  • Publication number: 20170043317
    Abstract: A method for preparing a crystallized solid material of formula LiCl.2Al(OH)3.nH2O with n being comprised between 0.01 and 10, includes mixing in an aqueous medium, at least one source of alumina and at least one source of lithium in order to obtain a suspension, filtering the resulting suspension obtained for obtaining a slurry, followed by drying the obtained slurry and shaping the dried slurry after the drying to obtain a shaped solid material. The shaping is carried out in absence of a binder followed by drying and a hydrothermal treatment to obtain the shaped crystallized solid material of formula LiCl.2Al(OH)3.nH2O. A method for extracting lithium from saline solutions uses the thereby prepared material.
    Type: Application
    Filed: April 24, 2015
    Publication date: February 16, 2017
    Inventors: Malika BOUALLEG, Fabien André Pierre BURDET, Romain Charles Joseph René SOULAIROL