Patents by Inventor Manfred Pfaffenlehner

Manfred Pfaffenlehner has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11848377
    Abstract: A semiconductor component includes a semiconductor body having opposing first surface and second surfaces, and a side surface surrounding the semiconductor body. The semiconductor component also includes an active region including a first semiconductor region of a first conductivity type, which is electrically contacted via the first surface, and a second semiconductor region of a second conductivity type, which is electrically contacted via the second surface. The semiconductor component further includes an edge termination region arranged in a lateral direction between the first semiconductor region of the active region and the side surface, and includes a first edge termination structure and a second edge termination structure. The second edge termination structure is arranged in the lateral direction between the first edge termination structure and the side surface and extends from the first surface in a vertical direction more deeply into the semiconductor body than the first edge termination structure.
    Type: Grant
    Filed: May 4, 2021
    Date of Patent: December 19, 2023
    Assignee: Infineon Technologies AG
    Inventors: Anton Mauder, Hans-Joachim Schulze, Matteo Dainese, Elmar Falck, Franz-Josef Niedernostheide, Manfred Pfaffenlehner
  • Publication number: 20230274996
    Abstract: A chip arrangement is provided. The chip arrangement may include a chip including a first main surface, wherein the first main surface includes an active area, a chip termination portion, and at least one contact pad. A first dielectric layer at least partially covers the chip termination portion and the active area, and at least partially exposes the at least one contact pad, and a second dielectric layer formed by atomic layer deposition over the first dielectric layer and over the at least one contact pad.
    Type: Application
    Filed: February 3, 2023
    Publication date: August 31, 2023
    Applicant: Infineon Technologies AG
    Inventors: Stefan SCHWAB, Edward FÜRGUT, Edmund RIEDL, Harry SAX, Stefan KRIVEC, Manfred PFAFFENLEHNER, Carsten SCHAEFFER
  • Patent number: 11251266
    Abstract: A power semiconductor device includes a semiconductor body having a drift region of a first conductivity type inside an active region. An edge termination region includes: a guard region of a second conductivity type at a front side of the semiconductor body and surrounding the active region; and a field plate trench structure extending vertically into the body from the front side and at least partially filled with a conductive material that is electrically connected with the guard region and insulated from the body external of the guard region. A first portion of the field plate trench structure at least partially extends into the guard region and is at least partially arranged below a metal layer arranged at the front side. A second portion of the field plate trench structure extends outside of the guard region and surrounds the active area, the metal layer not extending above the second portion.
    Type: Grant
    Filed: February 14, 2020
    Date of Patent: February 15, 2022
    Assignee: Infineon Technologies AG
    Inventors: Philip Christoph Brandt, Manfred Pfaffenlehner, Frank Dieter Pfirsch, Francisco Javier Santos Rodriguez, Steffen Schmidt, Frank Umbach
  • Publication number: 20210257489
    Abstract: A semiconductor component includes a semiconductor body having opposing first surface and second surfaces, and a side surface surrounding the semiconductor body. The semiconductor component also includes an active region including a first semiconductor region of a first conductivity type, which is electrically contacted via the first surface, and a second semiconductor region of a second conductivity type, which is electrically contacted via the second surface. The semiconductor component further includes an edge termination region arranged in a lateral direction between the first semiconductor region of the active region and the side surface, and includes a first edge termination structure and a second edge termination structure. The second edge termination structure is arranged in the lateral direction between the first edge termination structure and the side surface and extends from the first surface in a vertical direction more deeply into the semiconductor body than the first edge termination structure.
    Type: Application
    Filed: May 4, 2021
    Publication date: August 19, 2021
    Inventors: Anton Mauder, Hans-Joachim Schulze, Matteo Dainese, Elmar Falck, Franz-Josef Niedernostheide, Manfred Pfaffenlehner
  • Patent number: 11094779
    Abstract: An edge delimits a semiconductor body in a direction parallel to a first side of the semiconductor body. A peripheral area is arranged between the active area and edge. A first semiconductor region of a first conductivity type extends from the active area into the peripheral area. A second semiconductor region of a second conductivity type forms a pn-junction with the first semiconductor region. A first edge termination region of the second conductivity type arranged at the first side adjoins the first semiconductor region, between the second semiconductor region and edge. A second edge termination region of the first conductivity type arranged at the first side and between the first edge termination region and edge has a varying concentration of dopants of the first conductivity type which increases at least next to the first edge termination region substantially linearly with an increasing distance from the first edge termination region.
    Type: Grant
    Filed: April 25, 2017
    Date of Patent: August 17, 2021
    Assignee: Infineon Technologies AG
    Inventors: Philip Christoph Brandt, Andre Rainer Stegner, Francisco Javier Santos Rodriguez, Frank Dieter Pfirsch, Hans-Joachim Schulze, Manfred Pfaffenlehner, Thomas Auer
  • Patent number: 11018249
    Abstract: A semiconductor component includes a semiconductor body having opposing first surface and second surfaces, and a side surface surrounding the semiconductor body. The semiconductor component also includes an active region including a first semiconductor region of a first conductivity type, which is electrically contacted via the first surface, and a second semiconductor region of a second conductivity type, which is electrically contacted via the second surface. The semiconductor component further includes an edge termination region arranged in a lateral direction between the first semiconductor region of the active region and the side surface, and includes a first edge termination structure and a second edge termination structure. The second edge termination structure is arranged in the lateral direction between the first edge termination structure and the side surface and extends from the first surface in a vertical direction more deeply into the semiconductor body than the first edge termination structure.
    Type: Grant
    Filed: January 31, 2019
    Date of Patent: May 25, 2021
    Assignee: Infineon Technologies AG
    Inventors: Anton Mauder, Hans-Joachim Schulze, Matteo Dainese, Elmar Falck, Franz-Josef Niedernostheide, Manfred Pfaffenlehner
  • Patent number: 10998399
    Abstract: A power semiconductor device includes a semiconductor substrate with an edge termination region between an active region and a lateral rim. Non-metallic electrodes extend in the edge termination region on a front side of the substrate, and include at least three spaced apart non-metallic electrodes. One non-metallic electrode is an inner non-metallic electrode having an inner edge. Another non-metallic electrode is an outer non-metallic electrode having an outer edge. The shortest distance between the inner edge of the inner non-metallic electrode and the outer edge of the most non-metallic electrode is defined as distance p. Each non-metallic electrode is electrically connected to a respective doping region of the substrate by at least two respective metallic plugs each extending through a respective first opening formed in an electrically insulating bottom layer. The shortest distance d between any two metallic plugs of different non-metallic electrodes is larger than the distance p.
    Type: Grant
    Filed: June 28, 2019
    Date of Patent: May 4, 2021
    Assignee: Infineon Technologies AG
    Inventors: Alice Pei-Shan Hsieh, Philip Christoph Brandt, Holger Huesken, Viktoryia Lapidus, Manfred Pfaffenlehner, Frank Dieter Pfirsch
  • Patent number: 10957764
    Abstract: A semiconductor body includes first and second opposing surfaces, an edge extending in a vertical direction substantially perpendicular to the first surface, an active area, a peripheral area arranged in a horizontal direction substantially parallel to the first surface between the active area and edge, and a pn-junction extending from the active area into the peripheral area. In the peripheral area the semiconductor device further includes a first conductive region arranged next to the first surface, a second conductive region arranged next to the first surface, and arranged in the horizontal direction between the first conductive region and edge, and a passivation structure including a first portion at least partly covering the first conductive region, a second portion at least partly covering the second conductive region. The first portion has a different layer composition than the second portion and/or a thickness which differs from the thickness of the second portion.
    Type: Grant
    Filed: April 6, 2015
    Date of Patent: March 23, 2021
    Assignee: Infineon Technologies AG
    Inventors: Franz Josef Niedernostheide, Manfred Pfaffenlehner, Hans-Joachim Schulze, Holger Schulze, Frank Umbach, Christoph Weiss
  • Publication number: 20200357883
    Abstract: A power semiconductor device includes an active region having a total volume with a central volume forming at least 20% of the total volume, a peripheral volume forming at least 20% of the total volume and surrounding the central volume, and an outermost peripheral volume forming at least 5% of the total volume and surrounding the peripheral volume. The peripheral volume has a constant lateral distance from an edge termination region. A first doped semiconductor region is electrically connected with a first load terminal at a semiconductor body frontside. A second doped semiconductor region is electrically connected with a second load terminal at a semiconductor body backside. The first and/or second doped semiconductor region has: a central portion extending into the central volume and having a central average dopant dose; and a peripheral portion extending into the peripheral volume and having a peripheral average dopant dose.
    Type: Application
    Filed: May 6, 2020
    Publication date: November 12, 2020
    Inventors: Manfred Pfaffenlehner, Josef-Georg Bauer, Frank Dieter Pfirsch, Thilo Scheiper, Konrad Schraml
  • Publication number: 20200266269
    Abstract: A power semiconductor device includes a semiconductor body having a drift region of a first conductivity type inside an active region. An edge termination region includes: a guard region of a second conductivity type at a front side of the semiconductor body and surrounding the active region; and a field plate trench structure extending vertically into the body from the front side and at least partially filled with a conductive material that is electrically connected with the guard region and insulated from the body external of the guard region. A first portion of the field plate trench structure at least partially extends into the guard region and is at least partially arranged below a metal layer arranged at the front side. A second portion of the field plate trench structure extends outside of the guard region and surrounds the active area, the metal layer not extending above the second portion.
    Type: Application
    Filed: February 14, 2020
    Publication date: August 20, 2020
    Inventors: Philip Christoph Brandt, Manfred Pfaffenlehner, Frank Dieter Pfirsch, Francisco Javier Santos Rodriguez, Steffen Schmidt, Frank Umbach
  • Patent number: 10600862
    Abstract: A power semiconductor device includes a semiconductor body coupled to first and second load terminals and including a drift region with dopants of a first conductivity type. An active region has at least one power cell extending at least partially into the semiconductor body, is electrically connected with the first load terminal and includes a part of the drift region. Each power cell includes a section of the drift region and is configured to conduct a load current between the terminals and to block a blocking voltage applied between the terminals. A chip edge laterally terminates the semiconductor body. A non-active termination structure arranged in between the chip edge and active region includes an ohmic layer. The ohmic layer is arranged above a surface of the semiconductor body, forms an ohmic connection between electrical potentials of the first and second load terminals, and is laterally structured along the ohmic connection.
    Type: Grant
    Filed: October 24, 2017
    Date of Patent: March 24, 2020
    Assignee: Infineon Technologies Austria AG
    Inventors: Erich Griebl, Frank Wolter, Andreas Moser, Manfred Pfaffenlehner
  • Publication number: 20200013854
    Abstract: A power semiconductor device includes a semiconductor substrate with an edge termination region between an active region and a lateral rim. Non-metallic electrodes extend in the edge termination region on a front side of the substrate, and include at least three spaced apart non-metallic electrodes. One non-metallic electrode is an inner non-metallic electrode having an inner edge. Another non-metallic electrode is an outer non-metallic electrode having an outer edge. The shortest distance between the inner edge of the inner non-metallic electrode and the outer edge of the most non-metallic electrode is defined as distance p. Each non-metallic electrode is electrically connected to a respective doping region of the substrate by at least two respective metallic plugs each extending through a respective first opening formed in an electrically insulating bottom layer. The shortest distance d between any two metallic plugs of different non-metallic electrodes is larger than the distance p.
    Type: Application
    Filed: June 28, 2019
    Publication date: January 9, 2020
    Inventors: Alice Pei-Shan Hsieh, Philip Christoph Brandt, Holger Huesken, Viktoryia Lapidus, Manfred Pfaffenlehner, Frank Dieter Pfirsch
  • Patent number: 10497801
    Abstract: A method of manufacturing a semiconductor device includes forming a profile of net doping in a drift zone of a semiconductor body by multiple irradiations with protons and generating hydrogen-related donors by annealing the semiconductor body. At least 50% of a vertical extension of the drift zone between first and second sides of the semiconductor body is undulated and includes multiple doping peak values between 1×1013 cm?3 and 5×1014 cm?3.
    Type: Grant
    Filed: January 25, 2019
    Date of Patent: December 3, 2019
    Assignee: Infineon Technologies AG
    Inventors: Elmar Falck, Andreas Haertl, Manfred Pfaffenlehner, Francisco Javier Santos Rodriguez, Daniel Schloegl, Hans-Joachim Schulze, Andre Stegner, Johannes Georg Laven
  • Publication number: 20190237575
    Abstract: A semiconductor component includes a semiconductor body having opposing first surface and second surfaces, and a side surface surrounding the semiconductor body. The semiconductor component also includes an active region including a first semiconductor region of a first conductivity type, which is electrically contacted via the first surface, and a second semiconductor region of a second conductivity type, which is electrically contacted via the second surface. The semiconductor component further includes an edge termination region arranged in a lateral direction between the first semiconductor region of the active region and the side surface, and includes a first edge termination structure and a second edge termination structure. The second edge termination structure is arranged in the lateral direction between the first edge termination structure and the side surface and extends from the first surface in a vertical direction more deeply into the semiconductor body than the first edge termination structure.
    Type: Application
    Filed: January 31, 2019
    Publication date: August 1, 2019
    Inventors: Anton Mauder, Hans-Joachim Schulze, Matteo Dainese, Elmar Falck, Franz-Josef Niedernostheide, Manfred Pfaffenlehner
  • Publication number: 20190157435
    Abstract: A method of manufacturing a semiconductor device includes forming a profile of net doping in a drift zone of a semiconductor body by multiple irradiations with protons and generating hydrogen-related donors by annealing the semiconductor body. At least 50% of a vertical extension of the drift zone between first and second sides of the semiconductor body is undulated and includes multiple doping peak values between 1×1013 cm?3 and 5×1014 cm?3.
    Type: Application
    Filed: January 25, 2019
    Publication date: May 23, 2019
    Inventors: Elmar Falck, Andreas Haertl, Manfred Pfaffenlehner, Francisco Javier Santos Rodriguez, Daniel Schloegl, Hans-Joachim Schulze, Andre Stegner, Johannes Georg Laven
  • Patent number: 10211325
    Abstract: A semiconductor device includes a semiconductor body having opposite first and second sides. The semiconductor device further includes a drift zone in the semiconductor body between the second side and a pn junction. A profile of net doping of the drift zone along at least 50% of a vertical extension of the drift zone between the first and second sides is undulated and includes doping peak values between 1×1013 cm?3 and 5×1014 cm?3. A device blocking voltage Vbr is defined by a breakdown voltage of the pn junction between the drift zone and a semiconductor region of opposite conductivity type that is electrically coupled to the first side of the semiconductor body.
    Type: Grant
    Filed: January 28, 2014
    Date of Patent: February 19, 2019
    Assignee: Infineon Technologies AG
    Inventors: Elmar Falck, Andreas Haertl, Manfred Pfaffenlehner, Francisco Javier Santos Rodriguez, Daniel Schloegl, Hans-Joachim Schulze, Andre Stegner, Johannes Georg Laven
  • Publication number: 20180114830
    Abstract: A power semiconductor device includes a semiconductor body coupled to first and second load terminals and including a drift region with dopants of a first conductivity type. An active region has at least one power cell extending at least partially into the semiconductor body, is electrically connected with the first load terminal and includes a part of the drift region. Each power cell includes a section of the drift region and is configured to conduct a load current between the terminals and to block a blocking voltage applied between the terminals. A chip edge laterally terminates the semiconductor body. A non-active termination structure arranged in between the chip edge and active region includes an ohmic layer. The ohmic layer is arranged above a surface of the semiconductor body, forms an ohmic connection between electrical potentials of the first and second load terminals, and is laterally structured along the ohmic connection.
    Type: Application
    Filed: October 24, 2017
    Publication date: April 26, 2018
    Inventors: Erich Griebl, Frank Wolter, Andreas Moser, Manfred Pfaffenlehner
  • Patent number: 9825136
    Abstract: A semiconductor component includes an element composed of a conductive material, which is arranged above a surface of a semiconductor substrate. The element includes an element region not adjoined by any electrical contacts to an overlying or underlying electrically conductive plane. In this case, a surface of the element facing away from the semiconductor substrate is patterned with elevations or depressions and a surface of the element region facing the semiconductor substrate is patterned to a lesser extent or is not patterned.
    Type: Grant
    Filed: March 10, 2015
    Date of Patent: November 21, 2017
    Assignee: Infineon Technologies Austria AG
    Inventors: Franz Josef Niedernostheide, Manfred Pfaffenlehner, Frank Dieter Pfirsch, Hans-Joachim Schulze, Holger Schulze, Christoph Weiss
  • Publication number: 20170317165
    Abstract: An edge delimits a semiconductor body in a direction parallel to a first side of the semiconductor body. A peripheral area is arranged between the active area and edge. A first semiconductor region of a first conductivity type extends from the active area into the peripheral area. A second semiconductor region of a second conductivity type forms a pn-junction with the first semiconductor region. A first edge termination region of the second conductivity type arranged at the first side adjoins the first semiconductor region, between the second semiconductor region and edge. A second edge termination region of the first conductivity type arranged at the first side and between the first edge termination region and edge has a varying concentration of dopants of the first conductivity type which increases at least next to the first edge termination region substantially linearly with an increasing distance from the first edge termination region.
    Type: Application
    Filed: April 25, 2017
    Publication date: November 2, 2017
    Inventors: Philip Christoph Brandt, Andre Rainer Stegner, Francisco Javier Santos Rodriguez, Frank Dieter Pfirsch, Hans-Joachim Schulze, Manfred Pfaffenlehner, Thomas Auer
  • Patent number: 9385181
    Abstract: A semiconductor diode includes a semiconductor body having opposite first and second sides. A first and a second semiconductor region are consecutively arranged along a lateral direction at the second side. The first and second semiconductor regions are of opposite first and second conductivity types and are electrically coupled to an electrode at the second side. The semiconductor diode further includes a third semiconductor region of the second conductivity type buried in the semiconductor body at a distance from the second side. The second and third semiconductor regions are separated from each other.
    Type: Grant
    Filed: January 23, 2014
    Date of Patent: July 5, 2016
    Assignee: Infineon Technologies AG
    Inventors: Hans Peter Felsl, Elmar Falck, Manfred Pfaffenlehner, Frank Hille, Andreas Haertl, Holger Schulze, Daniel Schloegl