Patents by Inventor Manfred Pfaffenlehner

Manfred Pfaffenlehner has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20090186462
    Abstract: A semiconductor device in one embodiment has a first connection region, a second connection region and a semiconductor volume arranged between the first and second connection regions. Provision is made, within the semiconductor volume, in the vicinity of the second connection region, of a field stop zone for spatially delimiting a space charge zone that can be formed in the semiconductor volume, and of an anode region adjoining the first connection region. The dopant concentration profile within the semiconductor volume is configured such that the integral of the ionized dopant charge over the semiconductor volume, proceeding from an interface of the anode region which faces the second connection region, in the direction of the second connection region, reaches a quantity of charge corresponding to the breakdown charge of the semiconductor device only near the interface of the field stop zone which faces the second connection region.
    Type: Application
    Filed: April 2, 2009
    Publication date: July 23, 2009
    Inventors: Anton Mauder, Hans-Joachim Schulze, Frank Hille, Holger Schulze, Manfred Pfaffenlehner, Carsten Schaffer, Franz-Josef Niedernostheide
  • Patent number: 7514750
    Abstract: A semiconductor device according to the invention has a first connection region, a second connection region and a semiconductor volume arranged between the first and second connection regions. Provision is made, within the semiconductor volume, in the vicinity of the second connection region, of a field stop zone for spatially delimiting a space charge zone that can be formed in the semiconductor volume, and of an anode region adjoining the first connection region. The dopant concentration profile within the semiconductor volume is configured such that the integral of the ionized dopant charge over the semiconductor volume, proceeding from an interface of the anode region which faces the second connection region, in the direction of the second connection region, reaches a quantity of charge corresponding to the breakdown charge of the semiconductor device only near the interface of the field stop zone which faces the second connection region.
    Type: Grant
    Filed: September 30, 2005
    Date of Patent: April 7, 2009
    Assignee: Infineon Technologies AG
    Inventors: Anton Mauder, Hans-Joachim Schulze, Frank Hille, Holger Schulze, Manfred Pfaffenlehner, Carsten Schäffer, Franz-Josef Niedernostheide
  • Patent number: 7470952
    Abstract: A power IGBT includes a semiconductor body having an emitter zone of a first conduction type and a drift zone of a second conduction type proximate to the emitter zone. The IGBT further includes a cell array, each transistor cell of the array having a source zone, a body zone disposed between the source zone and the drift zone, the body zone and source zone short-circuited, and a gate electrode configured to be insulated with respect to the source zone and the body zone. The cell array has a first cell array section with a first cell density and a second cell array section with a second cell density that is lower than the first cell density. The emitter zone has a lower emitter efficiency in a region corresponding to the second cell array section than in a region corresponding to the first cell array section.
    Type: Grant
    Filed: November 9, 2006
    Date of Patent: December 30, 2008
    Assignee: Infineon Technologies AG
    Inventors: Holger Ruething, Hans-Joachim Schulze, Manfred Pfaffenlehner
  • Publication number: 20080290466
    Abstract: A semiconductor element includes a semiconductor layer having a first doping density, a metallization, and a contact area located between the semiconductor layer and the metallization. The contact area includes at least one first semiconductor area that has a second doping density higher than the first doping density, and at least one second semiconductor area in the semiconductor layer. The second semiconductor area is in contact with the metallization and provides lower ohmic resistance to the metallization than a direct contact between the semiconductor layer and the metallization provides or would provide.
    Type: Application
    Filed: May 23, 2008
    Publication date: November 27, 2008
    Inventors: Franz Josef Niedernostheide, Manfred Pfaffenlehner, Hans-Joachim Schulze
  • Publication number: 20070278472
    Abstract: A semiconductor component includes a semiconductor body and a second semiconductor zone of a first conductivity type that serves as a rear side emitter. The second semiconductor zone is preceded by a plurality of third semiconductor zones of a second conductivity type that is opposite to the first conductivity type. The third semiconductor zones are spaced apart from one another in a lateral direction. In addition, provided within the semiconductor body is a field stop zone spaced apart from the second semiconductor zone, thereby reducing an electric field in the direction toward the second semiconductor zone.
    Type: Application
    Filed: June 4, 2007
    Publication date: December 6, 2007
    Applicant: Infineon Technologies AG
    Inventors: Anton Mauder, Hans-Peter Felsl, Manfred Pfaffenlehner, Hans-Joachim Schulze
  • Publication number: 20070152268
    Abstract: A semiconductor component and method of making a semiconductor component is disclosed. In one embodiment, the semiconductor component includes a drift region of a first conductivity type, a body region of a second conductivity type, and a trench extending into the body region. A semiconductor region of the first conductivity type is in contact with the drift region and the body region and is arranged at a distance from the trench.
    Type: Application
    Filed: November 28, 2006
    Publication date: July 5, 2007
    Inventors: Frank Hille, Frank Umbach, Anton Mauder, Hans-Joachim Schulze, Thomas Laska, Manfred Pfaffenlehner
  • Publication number: 20070120181
    Abstract: A power IGBT includes a semiconductor body having an emitter zone of a first conduction type and a drift zone of a second conduction type proximate to the emitter zone. The IGBT further includes a cell array, each transistor cell of the array having a source zone, a body zone disposed between the source zone and the drift zone, the body zone and source zone short-circuited, and a gate electrode configured to be insulated with respect to the source zone and the body zone. The cell array has a first cell array section with a first cell density and a second cell array section with a second cell density that is lower than the first cell density. The emitter zone has a lower emitter efficiency in a region corresponding to the second cell array section than in a region corresponding to the first cell array section.
    Type: Application
    Filed: November 9, 2006
    Publication date: May 31, 2007
    Applicant: Infineon Technologies AG
    Inventors: Holger Ruething, Hans-Joachim Schulze, Manfred Pfaffenlehner
  • Publication number: 20060081923
    Abstract: A semiconductor device according to the invention has a first connection region, a second connection region and a semiconductor volume arranged between the first and second connection regions. Provision is made, within the semiconductor volume, in the vicinity of the second connection region, of a field stop zone for spatially delimiting a space charge zone that can be formed in the semiconductor volume, and of an anode region adjoining the first connection region. The dopant concentration profile within the semiconductor volume is configured such that the integral of the ionized dopant charge over the semiconductor volume, proceeding from an interface of the anode region which faces the second connection region, in the direction of the second connection region, reaches a quantity of charge corresponding to the breakdown charge of the semiconductor device only near the interface of the field stop zone which faces the second connection region.
    Type: Application
    Filed: September 30, 2005
    Publication date: April 20, 2006
    Applicant: Infineon Technologies AG
    Inventors: Anton Mauder, Hans-Joachim Schulze, Frank Hille, Holger Schulze, Manfred Pfaffenlehner, Carsten Schaffer, Franz-Josef Niedernostheide