Patents by Inventor Manish Deshpande

Manish Deshpande has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10689210
    Abstract: A microfabricated sheath flow structure for producing a sheath flow includes a primary sheath flow channel for conveying a sheath fluid, a sample inlet for injecting a sample into the sheath fluid in the primary sheath flow channel, a primary focusing region for focusing the sample within the sheath fluid and a secondary focusing region for providing additional focusing of the sample within the sheath fluid. The secondary focusing region may be formed by a flow channel intersecting the primary sheath flow channel to inject additional sheath fluid into the primary sheath flow channel from a selected direction. A sheath flow system may comprise a plurality of sheath flow structures operating in parallel on a microfluidic chip.
    Type: Grant
    Filed: December 18, 2019
    Date of Patent: June 23, 2020
    Assignee: CYTONOME/ST, LLC
    Inventors: John R. Gilbert, Manish Deshpande, Bernard Bunner
  • Publication number: 20200122937
    Abstract: A microfabricated sheath flow structure for producing a sheath flow includes a primary sheath flow channel for conveying a sheath fluid, a sample inlet for injecting a sample into the sheath fluid in the primary sheath flow channel, a primary focusing region for focusing the sample within the sheath fluid and a secondary focusing region for providing additional focusing of the sample within the sheath fluid. The secondary focusing region may be formed by a flow channel intersecting the primary sheath flow channel to inject additional sheath fluid into the primary sheath flow channel from a selected direction. A sheath flow system may comprise a plurality of sheath flow structures operating in parallel on a microfluidic chip.
    Type: Application
    Filed: December 18, 2019
    Publication date: April 23, 2020
    Inventors: John R. Gilbert, Manish Deshpande, Bernard Bunner
  • Publication number: 20200086319
    Abstract: A microfluidic device includes a microchannel having an interior bounded by a side wall, an inlet, a switching region, and a plurality of outlet channels downstream of the switching region. The microchannel is formed in a microfluidic chip substrate and configured to accommodate a flow of liquid through the microchannel. The microfluidic device includes a valve operatively coupled to the switching region comprising a sealed reservoir. A side passage extends between the reservoir and the interior of the microchannel via an aperture in the side wall and is configured to accommodate a volume of liquid between the interior of the microchannel and the reservoir. The microfluidic device includes an actuator integrated into the microfluidic chip and configured to increase an internal pressure of the reservoir and move at least a portion of the volume of the liquid from the side passage into the microchannel to deflect a portion of the liquid flowing through the microchannel.
    Type: Application
    Filed: September 26, 2019
    Publication date: March 19, 2020
    Inventors: John R. Gilbert, Sebastian Böhm, Manish Deshpande
  • Publication number: 20200038855
    Abstract: A microfluidic product pouch assembly may be used in a microfluidic chip. The microfluidic product pouch may include a pouch surrounding an inner chamber and having a rupturing portion and an inner membrane positioned within the inner chamber. The inner membrane may separate the inner chamber into a first cavity and a second cavity. A reagent may be positioned within the first cavity and/or the second cavity. The microfluidic product pouch assembly may also include a rupturing structure. The rupturing structure may be configured to selectively break the rupturing portion of the microfluidic product pouch.
    Type: Application
    Filed: October 10, 2019
    Publication date: February 6, 2020
    Applicant: Siemens Healthcare Diagnostics Inc.
    Inventors: Dafeng Chen, James E. Rasmussen, Manish Deshpande
  • Patent number: 10543992
    Abstract: A microfabricated sheath flow structure for producing a sheath flow includes a primary sheath flow channel for conveying a sheath fluid, a sample inlet for injecting a sample into the sheath fluid in the primary sheath flow channel, a primary focusing region for focusing the sample within the sheath fluid and a secondary focusing region for providing additional focusing of the sample within the sheath fluid. The secondary focusing region may be formed by a flow channel intersecting the primary sheath flow channel to inject additional sheath fluid into the primary sheath flow channel from a selected direction. A sheath flow system may comprise a plurality of sheath flow structures operating in parallel on a microfluidic chip.
    Type: Grant
    Filed: October 30, 2017
    Date of Patent: January 28, 2020
    Assignee: CYTONOME/ST, LLC
    Inventors: John R. Gilbert, Manish Deshpande, Bernard Bunner
  • Patent number: 10520421
    Abstract: An optical system for acquiring fast spectra from spatially channel arrays includes a light source for producing a light beam that passes through the microfluidic chip or the channel to be monitored, one or more lenses or optical fibers for capturing the light from the light source after interaction with the particles or chemicals in the microfluidic channels, and one or more detectors. The detectors, which may include light amplifying elements, detect each light signal and transducer the light signal into an electronic signal. The electronic signals, each representing the intensity of an optical signal, pass from each detector to an electronic data acquisition system for analysis. The light amplifying element or elements may comprise an array of phototubes, a multianode phototube, or a multichannel plate based image intensifier coupled to an array of photodiode detectors.
    Type: Grant
    Filed: August 4, 2017
    Date of Patent: December 31, 2019
    Assignee: CYTONOME/ST, LLC
    Inventors: John R. Gilbert, Edward Sinofsky, Manish Deshpande
  • Patent number: 10441951
    Abstract: A microfluidic product pouch assembly may be used in a microfluidic chip. The microfluidic product pouch may include a pouch surrounding an inner chamber and having a rupturing portion and an inner membrane positioned within the inner chamber. The inner membrane may separate the inner chamber into a first cavity and a second cavity. A reagent may be positioned within the first cavity and/or the second cavity. The microfluidic product pouch assembly may also include a rupturing structure. The rupturing structure may be configured to selectively break the rupturing portion of the microfluidic product pouch.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: October 15, 2019
    Assignee: Siemens Healthcare Diagnostics Inc.
    Inventors: Dafeng Chen, James E. Rasmussen, Manish Deshpande
  • Patent number: 10427159
    Abstract: A microfluidic device includes a microchannel having an interior bounded by a side wall, an inlet, a switching region, and a plurality of outlet channels downstream of the switching region. The microchannel is formed in a microfluidic chip substrate and configured to accommodate a flow of liquid through the microchannel. The microfluidic device includes a valve operatively coupled to the switching region comprising a sealed reservoir. A side passage extends between the reservoir and the interior of the microchannel via an aperture in the side wall and is configured to accommodate a volume of liquid between the interior of the microchannel and the reservoir. The microfluidic device includes an actuator integrated into the microfluidic chip and configured to increase an internal pressure of the reservoir and move at least a portion of the volume of the liquid from the side passage into the microchannel to deflect a portion of the liquid flowing through the microchannel.
    Type: Grant
    Filed: March 30, 2018
    Date of Patent: October 1, 2019
    Assignee: CYTONOME/ST, LLC
    Inventors: John R. Gilbert, Sebastian Böhm, Manish Deshpande
  • Patent number: 10391425
    Abstract: A fluidic device and a method for degassing a fluidic device are presented. The fluidic device includes a plurality of fluidic components such as channels, chambers, and integrated valves and pumps, etc. A porous membrane is disposed on a degassing area of the fluidic device for removing gas (such as, for example, bubbles) contained in a liquid. A fluid control device monitors a pressure profile indicating a pressure in the fluidic device over time and applies a pressure differential between two sides of the membrane when activated. The membrane is permeable to gas in the fluidic device and is impermeable to liquids through the pores under the pressure differential. The disclosed method enables degassing large volume of gas at a high flow rate and provides a bubble free filling in a fluidic device which is critical to precision sample metering, mixing, fluid control, reaction, and detection, etc.
    Type: Grant
    Filed: June 16, 2015
    Date of Patent: August 27, 2019
    Assignee: Siemens Healthcare Diagnostics Inc.
    Inventors: Dafeng Chen, James E. Rasmussen, Manish Deshpande
  • Publication number: 20190195876
    Abstract: A single disposable cartridge for performing a process on a particle, such as particle sorting, encapsulates all fluid contact surfaces in the cartridge for use with microfluidic particle processing technology. The cartridge interfaces with an operating system for effecting particle processing. The encapsulation of the fluid contact surfaces insures, improves or promotes operator isolation and/or product isolation. The cartridge may employ any suitable technique for processing particles.
    Type: Application
    Filed: March 4, 2019
    Publication date: June 27, 2019
    Inventors: John R. Gilbert, Hugh Lewis, Derek Beaupre, Jaishree Trikha, Manish Deshpande
  • Publication number: 20190099755
    Abstract: An improved actuator for use in a microfluidic particle sorting system utilizes a staggered packing scheme for a plurality of actuators used to selectively deflect a particle in an associated sorting channel from a stream of channels. An actuator block may be provided for housing a two-dimensional array of actuators, each configured to align with an actuation port in an associated sorting chip containing a plurality of sorting channels. The actuator block may include a built-in stressing means to pre-stress each actuator housed by the block. An actuator comprising a piezo-electric stack may employ contact-based electrical connection rather than soldered wires to improve packing density. The actuator may be an external actuator. That is, the external actuator is external to the substrate in which the sorting channels are formed.
    Type: Application
    Filed: August 31, 2018
    Publication date: April 4, 2019
    Inventors: Andrew Johnson, John R. Gilbert, Manish Deshpande, Hugh Lewis, Bernard Bunner
  • Patent number: 10222378
    Abstract: A single disposable cartridge for performing a process on a particle, such as particle sorting, encapsulates all fluid contact surfaces in the cartridge for use with microfluidic particle processing technology. The cartridge interfaces with an operating system for effecting particle processing. The encapsulation of the fluid contact surfaces insures, improves or promotes operator isolation and/or product isolation. The cartridge may employ any suitable technique for processing particles.
    Type: Grant
    Filed: November 20, 2017
    Date of Patent: March 5, 2019
    Assignee: CYTONOME/ST, LLC
    Inventors: John R. Gilbert, Hugh Lewis, Derek Beaupre, Jaishree Trikha, Manish Deshpande
  • Publication number: 20190015841
    Abstract: A method and apparatus for sorting particles moving through a closed channel system of capillary size comprises a bubble valve for selectively generating a pressure pulse to separate a particle having a predetermined characteristic from a stream of particles. The particle sorting system may further include a buffer for absorbing the pressure pulse. The particle sorting system may include a plurality of closely coupled sorting modules which are combined to further increase the sorting rate. The particle sorting system may comprise a multi-stage sorting device for serially sorting streams of particles, in order to decrease the error rate.
    Type: Application
    Filed: July 19, 2018
    Publication date: January 17, 2019
    Inventors: Sebastian Böhm, John R. Gilbert, Manish Deshpande
  • Publication number: 20180368876
    Abstract: A thrombectomy catheter system is disclosed which includes a catheter having an exhaust lumen, an infusion lumen and a high pressure tube. The high pressure tube includes a nozzle orifice for forming a high pressure jet of fluid for cutting occlusive material from within a body lumen. The nozzle orifice is positioned to direct the high pressure jet of fluid into the distal end of the exhaust lumen which creates a suctioning effect. The infusion lumen replaces fluid that is removed from the body lumen through the exhaust lumen by a suctioning effect created by the fluid jet.
    Type: Application
    Filed: August 31, 2018
    Publication date: December 27, 2018
    Inventors: Arnaz S. Malhi, Daniel Hutton, Manish Deshpande, Phillip Shaltis
  • Publication number: 20180297085
    Abstract: A method and apparatus for sorting particles moving through a closed channel system of capillary size comprises actuators and chambers for selectively generating a pressure pulse to separate a particle having a predetermined characteristic from a stream of particles. The particle sorting system may further include a buffer for absorbing the pressure pulse. The particle sorting system may include a plurality of closely coupled sorting modules which are combined to further increase the sorting rate. The particle sorting system may comprise a multi-stage sorting device for serially sorting streams of particles, in order to decrease the error rate.
    Type: Application
    Filed: June 21, 2018
    Publication date: October 18, 2018
    Inventors: Manish Deshpande, John R. Gilbert
  • Patent number: 10064643
    Abstract: A thrombectomy catheter system is disclosed which includes a catheter having an exhaust lumen, an infusion lumen and a high pressure tube. The high pressure tube includes a nozzle orifice for forming a high pressure jet of fluid for cutting occlusive material from within a body lumen. The nozzle orifice is positioned to direct the high pressure jet of fluid into the distal end of the exhaust lumen which creates a suctioning effect. The infusion lumen replaces fluid that is removed from the body lumen through the exhaust lumen by a suctioning effect created by the fluid jet.
    Type: Grant
    Filed: January 18, 2016
    Date of Patent: September 4, 2018
    Assignee: Covidien LP
    Inventors: Arnaz Malhi, Daniel Hutton, Manish Deshpande, Phillip Shaltis
  • Patent number: 10065188
    Abstract: An improved actuator for use in a microfluidic particle sorting system utilizes a staggered packing scheme for a plurality of actuators used to selectively deflect a particle in an associated sorting channel from a stream of channels. An actuator block may be provided for housing a two-dimensional array of actuators, each configured to align with an actuation port in an associated sorting chip containing a plurality of sorting channels. The actuator block may include a built-in stressing means to pre-stress each actuator housed by the block. An actuator comprising a piezo-electric stack may employ contact-based electrical connection rather than soldered wires to improve packing density. The actuator may be an external actuator. That is, the external actuator is external to the substrate in which the sorting channels are formed.
    Type: Grant
    Filed: February 12, 2016
    Date of Patent: September 4, 2018
    Assignee: CYTONOME/ST, LLC
    Inventors: Andrew Johnson, John R. Gilbert, Manish Deshpande, Hugh Lewis, Bernard Bunner
  • Publication number: 20180221879
    Abstract: A microfluidic device includes a microchannel having an interior bounded by a side wall, an inlet, a switching region, and a plurality of outlet channels downstream of the switching region. The microchannel is formed in a microfluidic chip substrate and configured to accommodate a flow of liquid through the microchannel. The microfluidic device includes a valve operatively coupled to the switching region comprising a sealed reservoir. A side passage extends between the reservoir and the interior of the microchannel via an aperture in the side wall and is configured to accommodate a volume of liquid between the interior of the microchannel and the reservoir. The microfluidic device includes an actuator integrated into the microfluidic chip and configured to increase an internal pressure of the reservoir and move at least a portion of the volume of the liquid from the side passage into the microchannel to deflect a portion of the liquid flowing through the microchannel.
    Type: Application
    Filed: March 30, 2018
    Publication date: August 9, 2018
    Inventors: John R. Gilbert, Sebastian Böhm, Manish Deshpande
  • Publication number: 20180208412
    Abstract: A microfabricated sheath flow structure for producing a sheath flow includes a primary sheath flow channel for conveying a sheath fluid, a sample inlet for injecting a sample into the sheath fluid in the primary sheath flow channel, a primary focusing region for focusing the sample within the sheath fluid and a secondary focusing region for providing additional focusing of the sample within the sheath fluid. The secondary focusing region may be formed by a flow channel intersecting the primary sheath flow channel to inject additional sheath fluid into the primary sheath flow channel from a selected direction. A sheath flow system may comprise a plurality of sheath flow structures operating in parallel on a microfluidic chip.
    Type: Application
    Filed: October 30, 2017
    Publication date: July 26, 2018
    Inventors: John R. Gilbert, Manish Deshpande, Bernard Bunner
  • Patent number: 10029283
    Abstract: A method and apparatus for sorting particles moving through a closed channel system of capillary size comprises a bubble valve for selectively generating a pressure pulse to separate a particle having a predetermined characteristic from a stream of particles. The particle sorting system may further include a buffer for absorbing the pressure pulse. The particle sorting system may include a plurality of closely coupled sorting modules which are combined to further increase the sorting rate. The particle sorting system may comprise a multi-stage sorting device for serially sorting streams of particles, in order to decrease the error rate.
    Type: Grant
    Filed: August 17, 2015
    Date of Patent: July 24, 2018
    Assignee: CYTONOME/ST, LLC
    Inventors: Manish Deshpande, John R. Gilbert