Patents by Inventor Manish Deshpande

Manish Deshpande has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10029263
    Abstract: A method and apparatus for sorting particles moving through a closed channel system of capillary size comprises a bubble valve for selectively generating a pressure pulse to separate a particle having a predetermined characteristic from a stream of particles. The particle sorting system may further include a buffer for absorbing the pressure pulse. The particle sorting system may include a plurality of closely coupled sorting modules which are combined to further increase the sorting rate. The particle sorting system may comprise a multi-stage sorting device for serially sorting streams of particles, in order to decrease the error rate.
    Type: Grant
    Filed: March 22, 2013
    Date of Patent: July 24, 2018
    Assignee: CYTONOME/ST, LLC
    Inventors: Sebastian Böhm, John R. Gilbert, Manish Deshpande
  • Publication number: 20180104138
    Abstract: A method of controlling a compression device controls a vent phase of a compression device having an inflatable bladder capable of being pressurized for applying compression to a part of a subject's body. The method includes delivering pressurized fluid from a source of pressurized fluid to a first inflatable bladder disposed about a portion of the subject's body and venting the pressurized fluid from the first inflatable bladder by opening a first valve. The method further includes monitoring fluid pressure in the first inflatable bladder during the venting of the first inflatable bladder. Based at least in part on the monitored fluid pressure, the first valve is selectively closed and selectively reopened to control fluid pressure in the first inflatable bladder to remain within a desired residual pressure range.
    Type: Application
    Filed: December 18, 2017
    Publication date: April 19, 2018
    Applicant: KPR U.S., LLC
    Inventors: ARNAZ MALHI, MANISH DESHPANDE
  • Publication number: 20180104137
    Abstract: A method of controlling a compression device controls a vent phase of a compression device having an inflatable bladder capable of being pressurized for applying compression to a part of a subject's body. The method includes delivering pressurized fluid from a source of pressurized fluid to a first inflatable bladder disposed about a portion of the subject's body and venting the pressurized fluid from the first inflatable bladder by opening a first valve. The method further includes monitoring fluid pressure in the first inflatable bladder during the venting of the first inflatable bladder. Based at least in part on the monitored fluid pressure, the first valve is selectively closed and selectively reopened to control fluid pressure in the first inflatable bladder to remain within a desired residual pressure range.
    Type: Application
    Filed: December 18, 2017
    Publication date: April 19, 2018
    Applicant: KPR U.S., LLC
    Inventors: ARNAZ MALHI, MANISH DESHPANDE
  • Patent number: 9943847
    Abstract: A microfluidic system includes a bubble valve for regulating fluid flow through a microchannel. The bubble valve includes a fluid meniscus interfacing the microchannel interior and an actuator for deflecting the membrane into the microchannel interior to regulate fluid flow. The actuator generates a gas bubble in a liquid in the microchannel when a sufficient pressure is generated on the membrane.
    Type: Grant
    Filed: April 17, 2015
    Date of Patent: April 17, 2018
    Assignee: CYTONOME/ST, LLC
    Inventors: John R. Gilbert, Sebastian Böhm, Manish Deshpande
  • Publication number: 20180088022
    Abstract: An optical system for acquiring fast spectra from spatially channel arrays includes a light source for producing a light beam that passes through the microfluidic chip or the channel to be monitored, one or more lenses or optical fibers for capturing the light from the light source after interaction with the particles or chemicals in the microfluidic channels, and one or more detectors. The detectors, which may include light amplifying elements, detect each light signal and transducer the light signal into an electronic signal. The electronic signals, each representing the intensity of an optical signal, pass from each detector to an electronic data acquisition system for analysis. The light amplifying element or elements may comprise an array of phototubes, a multianode phototube, or a multichannel plate based image intensifier coupled to an array of photodiode detectors.
    Type: Application
    Filed: August 4, 2017
    Publication date: March 29, 2018
    Inventors: John R. Gilbert, Edward Sinofsky, Manish Deshpande
  • Publication number: 20180074060
    Abstract: A single disposable cartridge for performing a process on a particle, such as particle sorting, encapsulates all fluid contact surfaces in the cartridge for use with microfluidic particle processing technology. The cartridge interfaces with an operating system for effecting particle processing. The encapsulation of the fluid contact surfaces insures, improves or promotes operator isolation and/or product isolation. The cartridge may employ any suitable technique for processing particles.
    Type: Application
    Filed: November 20, 2017
    Publication date: March 15, 2018
    Inventors: John R. Gilbert, Hugh Lewis, Derek Beaupre, Jaishree Trikha, Manish Deshpande
  • Patent number: 9872812
    Abstract: A method of controlling a compression device controls a vent phase of a compression device having an inflatable bladder capable of being pressurized for applying compression to a part of a subject's body. The method includes delivering pressurized fluid from a source of pressurized fluid to a first inflatable bladder disposed about a portion of the subject's body and venting the pressurized fluid from the first inflatable bladder by opening a first valve. The method further includes monitoring fluid pressure in the first inflatable bladder during the venting of the first inflatable bladder. Based at least in part on the monitored fluid pressure, the first valve is selectively closed and selectively reopened to control fluid pressure in the first inflatable bladder to remain within a desired residual pressure range.
    Type: Grant
    Filed: September 28, 2012
    Date of Patent: January 23, 2018
    Assignee: KPR U.S., LLC
    Inventors: Arnaz Malhi, Manish Deshpande
  • Patent number: 9823252
    Abstract: A single disposable cartridge for performing a process on a particle, such as particle sorting, encapsulates all fluid contact surfaces in the cartridge for use with microfluidic particle processing technology. The cartridge interfaces with an operating system for effecting particle processing. The encapsulation of the fluid contact surfaces insures, improves or promotes operator isolation and/or product isolation. The cartridge may employ any suitable technique for processing particles.
    Type: Grant
    Filed: February 13, 2014
    Date of Patent: November 21, 2017
    Assignee: CYTONOME/ST, LLC
    Inventors: John R. Gilbert, Hugh Lewis, Derek Beaupre, Jaishree Trikha, Manish Deshpande
  • Patent number: 9802767
    Abstract: A microfabricated sheath flow structure for producing a sheath flow includes a primary sheath flow channel for conveying a sheath fluid, a sample inlet for injecting a sample into the sheath fluid in the primary sheath flow channel, a primary focusing region for focusing the sample within the sheath fluid and a secondary focusing region for providing additional focusing of the sample within the sheath fluid. The secondary focusing region may be formed by a flow channel intersecting the primary sheath flow channel to inject additional sheath fluid into the primary sheath flow channel from a selected direction. A sheath flow system may comprise a plurality of sheath flow structures operating in parallel on a microfluidic chip.
    Type: Grant
    Filed: September 19, 2016
    Date of Patent: October 31, 2017
    Assignee: CYTONOME/ST, LLC
    Inventors: John R. Gilbert, Manish Deshpande, Bernard Bunner
  • Patent number: 9752976
    Abstract: An optical system for acquiring fast spectra from spatially channel arrays includes a light source for producing a light beam that passes through the microfluidic chip or the channel to be monitored, one or more lenses or optical fibers for capturing the light from the light source after interaction with the particles or chemicals in the microfluidic channels, and one or more detectors. The detectors, which may include light amplifying elements, detect each light signal and transducer the light signal into an electronic signal. The electronic signals, each representing the intensity of an optical signal, pass from each detector to an electronic data acquisition system for analysis. The light amplifying element or elements may comprise an array of phototubes, a multianode phototube, or a multichannel plate based image intensifier coupled to an array of photodiode detectors.
    Type: Grant
    Filed: February 23, 2015
    Date of Patent: September 5, 2017
    Assignee: CYTONOME/ST, LLC
    Inventors: John R. Gilbert, Edward Sinofsky, Manish Deshpande
  • Patent number: 9717642
    Abstract: A compression garment apparatus including a compression garment and a pressurizer. The pressurizer intermittently pressurizes a therapeutic bladder on the compression garment and maintains a baseline pressure in the therapeutic bladder to maintain the therapeutic bladder in position with respect to a target compression zone on a body part on which the garment is worn. The baseline pressure is adjusted in response to sensed physical characteristics.
    Type: Grant
    Filed: April 30, 2014
    Date of Patent: August 1, 2017
    Assignee: COVIDIEN LP
    Inventor: Manish Deshpande
  • Publication number: 20170197212
    Abstract: A microfluidic test device and analyzer, the test device includes a sample well, at least one reaction well and a calibrator well fluidicly connected to a waste well which in turn is connected to a pump port. When vacuum pressure from the analyzer is applied through the pump port, fluid from the reaction well and the calibrator well are moved to the waste well via transparent flow paths. The analyzer detects objects in the flow paths and calibrates its measurement of the objects in the sample utilizing beads from the calibrator well.
    Type: Application
    Filed: June 29, 2015
    Publication date: July 13, 2017
    Applicant: Siemens Healthcare Diagnostics Inc.
    Inventor: Manish Deshpande
  • Publication number: 20170128938
    Abstract: A microfluidic system includes a bubble valve for regulating fluid flow through a microchannel. The bubble valve includes a fluid meniscus interfacing the microchannel interior and an actuator for deflecting the membrane into the microchannel interior to regulate fluid flow. The actuator generates a gas bubble in a liquid in the microchannel when a sufficient pressure is generated on the membrane.
    Type: Application
    Filed: April 17, 2015
    Publication date: May 11, 2017
    Inventors: John R. Gilbert, Sebastian Böhm, Manish Deshpande
  • Publication number: 20170120164
    Abstract: A fluidic device and a method for degassing a fluidic device are presented. The fluidic device includes a plurality of fluidic components such as channels, chambers, and integrated valves and pumps, etc. A porous membrane is disposed on a degassing area of the fluidic device for removing gas (such as, for example, bubbles) contained in a liquid. A fluid control device monitors a pressure profile indicating a pressure in the fluidic device over time and applies a pressure differential between two sides of the membrane when activated. The membrane is permeable to gas in the fluidic device and is impermeable to liquids through the pores under the pressure differential. The disclosed method enables degassing large volume of gas at a high flow rate and provides a bubble free filling in a fluidic device which is critical to precision sample metering, mixing, fluid control, reaction, and detection, etc.
    Type: Application
    Filed: June 16, 2015
    Publication date: May 4, 2017
    Applicant: Siemens Healthcare Diagnostics Inc.
    Inventors: Dafeng Chen, James E. Rasmussen, Manish Deshpande
  • Publication number: 20170066605
    Abstract: A microfabricated sheath flow structure for producing a sheath flow includes a primary sheath flow channel for conveying a sheath fluid, a sample inlet for injecting a sample into the sheath fluid in the primary sheath flow channel, a primary focusing region for focusing the sample within the sheath fluid and a secondary focusing region for providing additional focusing of the sample within the sheath fluid. The secondary focusing region may be formed by a flow channel intersecting the primary sheath flow channel to inject additional sheath fluid into the primary sheath flow channel from a selected direction. A sheath flow system may comprise a plurality of sheath flow structures operating in parallel on a microfluidic chip.
    Type: Application
    Filed: September 19, 2016
    Publication date: March 9, 2017
    Inventors: John R. Gilbert, Manish Deshpande, Bernard Bunner
  • Patent number: 9550215
    Abstract: A method and a system are provided for detecting particles moving through a detection region or regions for facilitating or processing a sample having one or more particles flowing through the detection region. The particle detection system may include an optically detectable pattern associated with a detection region. The optically detectable pattern may be configured to receive a particle optical signal and produce a patterned optical signal. The detection system may further include a detector configured to analyze the patterned optical signal to determine both a particle characteristic based on a property of the particle optical signal and a particle parameter based on a property of the optically detectable pattern.
    Type: Grant
    Filed: May 19, 2014
    Date of Patent: January 24, 2017
    Assignee: CYTONOME/ST, LLC
    Inventors: Manish Deshpande, John R. Gilbert
  • Publication number: 20160303564
    Abstract: A microfluidic system includes a bubble valve for regulating fluid flow through a microchannel. The bubble valve includes a fluid meniscus interfacing the microchannel interior and an actuator for deflecting the membrane into the microchannel interior to regulate fluid flow. The actuator generates a gas bubble in a liquid in the microchannel when a sufficient pressure is generated on the membrane.
    Type: Application
    Filed: April 17, 2015
    Publication date: October 20, 2016
    Inventors: John R. Gilbert, Sebastian Böhm, Manish Deshpande
  • Patent number: 9446912
    Abstract: A microfabricated sheath flow structure for producing a sheath flow includes a primary sheath flow channel for conveying a sheath fluid, a sample inlet for injecting a sample into the sheath fluid in the primary sheath flow channel, a primary focusing region for focusing the sample within the sheath fluid and a secondary focusing region for providing additional focusing of the sample within the sheath fluid. The secondary focusing region may be formed by a flow channel intersecting the primary sheath flow channel to inject additional sheath fluid into the primary sheath flow channel from a selected direction. A sheath flow system may comprise a plurality of sheath flow structures operating in parallel on a microfluidic chip.
    Type: Grant
    Filed: August 16, 2013
    Date of Patent: September 20, 2016
    Assignee: CYTONOME/ST, LLC
    Inventors: John R. Gilbert, Manish Deshpande, Bernard Bunner
  • Patent number: 9421142
    Abstract: A compression garment apparatus includes a compression garment and a pressurizer. The pressurizer intermittently pressurizes a therapeutic bladder on the compression garment and pressurizes a support bladder on the compression garment to enhance the fit of the compression garment and maintain the therapeutic bladder in position with respect to a target compression zone on a body part on which the garment is worn. The support bladder may be selectively pressurized when needed based at least in part on sensed physical characteristics.
    Type: Grant
    Filed: May 12, 2014
    Date of Patent: August 23, 2016
    Assignee: Covidien LP
    Inventors: Arnaz S. Malhi, Manish Deshpande
  • Publication number: 20160158758
    Abstract: An improved actuator for use in a microfluidic particle sorting system utilizes a staggered packing scheme for a plurality of actuators used to selectively deflect a particle in an associated sorting channel from a stream of channels. An actuator block may be provided for housing a two-dimensional array of actuators, each configured to align with an actuation port in an associated sorting chip containing a plurality of sorting channels. The actuator block may include a built-in stressing means to pre-stress each actuator housed by the block. An actuator comprising a piezo-electric stack may employ contact-based electrical connection rather than soldered wires to improve packing density. The actuator may be an external actuator. That is, the external actuator is external to the substrate in which the sorting channels are formed.
    Type: Application
    Filed: February 12, 2016
    Publication date: June 9, 2016
    Inventors: Andrew Johnson, John R. Gilbert, Manish Deshpande, Hugh Lewis, Bernard Bunner