Patents by Inventor Manoj Mehrotra

Manoj Mehrotra has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170033018
    Abstract: An integrated circuit containing an n-channel finFET and a p-channel finFET is formed by forming a first polarity fin epitaxial layer for a first polarity finFET, and subsequently forming a hard mask which exposes an area for a second, opposite, polarity fin epitaxial layer for a second polarity finFET. The second polarity fin epitaxial layer is formed in the area exposed by the hard mask. A fin mask defines the first polarity fin and second polarity fin areas, and a subsequent fin etch forms the respective fins. A layer of isolation dielectric material is formed over the substrate and fins. The layer of isolation dielectric material is planarized down to the fins. The layer of isolation dielectric material is recessed so that the fins extend at least 10 nanometers above the layer of isolation dielectric material. Gate dielectric layers and gates are formed over the fins.
    Type: Application
    Filed: October 13, 2016
    Publication date: February 2, 2017
    Inventors: Manoj Mehrotra, Charles Frank Machala, III, Rick L. Wise, Hiroaki Niimi
  • Patent number: 9496262
    Abstract: An integrated circuit containing an n-channel finFET and a p-channel finFET is formed by forming a first polarity fin epitaxial layer for a first polarity finFET, and subsequently forming a hard mask which exposes an area for a second, opposite, polarity fin epitaxial layer for a second polarity finFET. The second polarity fin epitaxial layer is formed in the area exposed by the hard mask. A fin mask defines the first polarity fin and second polarity fin areas, and a subsequent fin etch forms the respective fins. A layer of isolation dielectric material is formed over the substrate and fins. The layer of isolation dielectric material is planarized down to the fins. The layer of isolation dielectric material is recessed so that the fins extend at least 10 nanometers above the layer of isolation dielectric material. Gate dielectric layers and gates are formed over the fins.
    Type: Grant
    Filed: December 17, 2014
    Date of Patent: November 15, 2016
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Manoj Mehrotra, Charles Frank Machala, III, Rick L. Wise, Hiroaki Niimi
  • Publication number: 20160308054
    Abstract: A process of forming an integrated circuit containing a first transistor and a second transistor of the same polarity, by forming an epitaxial spacer layer over gates of both transistors, performing an epitaxial spacer anisotropic etch process to form epitaxial spacers on vertical surfaces adjacent to the first transistor gate and removing the epitaxial spacer layer from the second transistor gate, subsequently performing a source/drain etch process and a source/drain epitaxial process to form source/drain epitaxial regions in the substrate adjacent to the first and second gates, such that the first source/drain epitaxial regions are separated from the first gate by a lateral space which is at least 2 nanometers larger than a second lateral space separating the second source/drain epitaxial regions from the second gate. An integrated circuit formed by the recited process.
    Type: Application
    Filed: June 24, 2016
    Publication date: October 20, 2016
    Inventor: Manoj MEHROTRA
  • Publication number: 20160300836
    Abstract: An integrated circuit and method with a metal gate NMOS transistor with a high-k first gate dielectric on a high quality thermally grown interface dielectric and with a metal gate PMOS transistor with a high-k last gate dielectric on a chemically grown interface dielectric.
    Type: Application
    Filed: June 16, 2016
    Publication date: October 13, 2016
    Inventors: Hiroaki Niimi, Manoj Mehrotra, Mahalingam Nandakumar
  • Publication number: 20160284691
    Abstract: An integrated circuit formed on a silicon substrate includes an NMOS transistor with n-channel raised source and drain (NRSD) layers adjacent to a gate of the NMOS transistor, a PMOS transistor with SiGe stressors in the substrate adjacent to a gate of the PMOS transistor, and an NPN heterojunction bipolar transistor (NHBT) with a p-type SiGe base formed in the substrate and an n-type silicon emitter formed on the SiGe base. The SiGe stressors and the SiGe base are formed by silicon-germanium epitaxy. The NRSD layers and the silicon emitter are formed by silicon epitaxy.
    Type: Application
    Filed: June 3, 2016
    Publication date: September 29, 2016
    Inventors: Manoj MEHROTRA, Terry J. BORDELON, Deborah J. RILEY
  • Publication number: 20160225673
    Abstract: An integrated circuit containing an n-channel finFET and a p-channel finFET has a dielectric layer over a silicon substrate. The fins of the finFETs have semiconductor materials with higher mobilities than silicon. A fin of the n-channel finFET is on a first silicon-germanium buffer in a first trench through the dielectric layer on the substrate. A fin of the p-channel finFET is on a second silicon-germanium buffer in a second trench through the dielectric layer on the substrate. The fins extend at least 10 nanometers above the dielectric layer. The fins are formed by epitaxial growth on the silicon-germanium buffers in the trenches in the dielectric layer, followed by CMP planarization down to the dielectric layer. The dielectric layer is recessed to expose the fins. The fins may be formed concurrently or separately.
    Type: Application
    Filed: March 24, 2016
    Publication date: August 4, 2016
    Inventors: Hiroaki Niimi, Manoj Mehrotra, Rick L. Wise
  • Patent number: 9401365
    Abstract: A process of forming an integrated circuit containing a first transistor and a second transistor of the same polarity, by forming an epitaxial spacer layer over gates of both transistors, performing an epitaxial spacer anisotropic etch process to form epitaxial spacers on vertical surfaces adjacent to the first transistor gate and removing the epitaxial spacer layer from the second transistor gate, subsequently performing a source/drain etch process and a source/drain epitaxial process to form source/drain epitaxial regions in the substrate adjacent to the first and second gates, such that the first source/drain epitaxial regions are separated from the first gate by a lateral space which is at least 2 nanometers larger than a second lateral space separating the second source/drain epitaxial regions from the second gate. An integrated circuit formed by the recited process.
    Type: Grant
    Filed: December 3, 2014
    Date of Patent: July 26, 2016
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventor: Manoj Mehrotra
  • Patent number: 9397100
    Abstract: An integrated circuit and method with a metal gate NMOS transistor with a high-k first gate dielectric on a high quality thermally grown interface dielectric and with a metal gate PMOS transistor with a high-k last gate dielectric on a chemically grown interface dielectric.
    Type: Grant
    Filed: December 22, 2014
    Date of Patent: July 19, 2016
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Hiroaki Niimi, Manoj Mehrotra, Mahalingam Nandakumar
  • Patent number: 9397182
    Abstract: A transistor is formed in a semiconductor substrate with a gate over a channel region, source/drain extension regions in the substrate adjacent the channel region, and source/drain regions in the substrate adjacent the source/drain extension regions. Silicide is formed on the source/drain extension regions and the source/drain regions so that the silicide has a first thickness over the source/drain extension regions and a second thickness over source/drain regions, with the second thickness being greater than the first thickness. Silicide on the source/drain extension regions lowers transistor series resistance which boosts transistor performance and also protects the source/drain extension regions from silicon loss and silicon damage during contact etch.
    Type: Grant
    Filed: September 26, 2014
    Date of Patent: July 19, 2016
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventor: Manoj Mehrotra
  • Publication number: 20160204198
    Abstract: An integrated circuit containing an n-channel finFET and a p-channel finFET has a dielectric layer over a silicon substrate. The fins of the finFETs have semiconductor materials with higher mobilities than silicon. A fin of the n-channel finFET is on a first silicon-germanium buffer in a first trench through the dielectric layer on the substrate. A fin of the p-channel finFET is on a second silicon-germanium buffer in a second trench through the dielectric layer on the substrate. The fins extend at least 10 nanometers above the dielectric layer. The fins are formed by epitaxial growth on the silicon-germanium buffers in the trenches in the dielectric layer, followed by CMP planarization down to the dielectric layer. The dielectric layer is recessed to expose the fins. The fins may be formed concurrently or separately.
    Type: Application
    Filed: March 24, 2016
    Publication date: July 14, 2016
    Inventors: Hiroaki Niimi, Manoj Mehrotra, Rick L. Wise
  • Patent number: 9385117
    Abstract: An integrated circuit formed on a silicon substrate includes an NMOS transistor with n-channel raised source and drain (NRSD) layers adjacent to a gate of the NMOS transistor, a PMOS transistor with SiGe stressors in the substrate adjacent to a gate of the PMOS transistor, and an NPN heterojunction bipolar transistor (NHBT) with a p-type SiGe base formed in the substrate and an n-type silicon emitter formed on the SiGe base. The SiGe stressors and the SiGe base are formed by silicon-germanium epitaxy. The NRSD layers and the silicon emitter are formed by silicon epitaxy.
    Type: Grant
    Filed: December 17, 2014
    Date of Patent: July 5, 2016
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Manoj Mehrotra, Terry J. Bordelon, Jr., Deborah J. Riley
  • Patent number: 9356131
    Abstract: The gate-to-source and gate-to-drain overlap capacitance of a MOS transistor with a metal gate and a high-k gate dielectric are reduced by forming the high-k gate dielectric along the inside of a sidewall structure which has been formed to lie further away from the source and the drain.
    Type: Grant
    Filed: March 2, 2015
    Date of Patent: May 31, 2016
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Manoj Mehrotra, Hiroaki Niimi
  • Patent number: 9324717
    Abstract: An integrated circuit containing an n-channel finFET and a p-channel finFET has a dielectric layer over a silicon substrate. The fins of the finFETs have semiconductor materials with higher mobilities than silicon. A fin of the n-channel finFET is on a first silicon-germanium buffer in a first trench through the dielectric layer on the substrate. A fin of the p-channel finFET is on a second silicon-germanium buffer in a second trench through the dielectric layer on the substrate. The fins extend at least 10 nanometers above the dielectric layer. The fins are formed by epitaxial growth on the silicon-germanium buffers in the trenches in the dielectric layer, followed by CMP planarization down to the dielectric layer. The dielectric layer is recessed to expose the fins. The fins may be formed concurrently or separately.
    Type: Grant
    Filed: December 17, 2014
    Date of Patent: April 26, 2016
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Hiroaki Niimi, Manoj Mehrotra, Rick L. Wise
  • Publication number: 20150187755
    Abstract: An integrated circuit formed on a silicon substrate includes an NMOS transistor with n-channel raised source and drain (NRSD) layers adjacent to a gate of the NMOS transistor, a PMOS transistor with SiGe stressors in the substrate adjacent to a gate of the PMOS transistor, and an NPN heterojunction bipolar transistor (NHBT) with a p-type SiGe base formed in the substrate and an n-type silicon emitter formed on the SiGe base. The SiGe stressors and the SiGe base are formed by silicon-germanium epitaxy. The NRSD layers and the silicon emitter are formed by silicon epitaxy.
    Type: Application
    Filed: December 17, 2014
    Publication date: July 2, 2015
    Inventors: Manoj MEHROTRA, Terry J. BORDELON, JR., Deborah J. RILEY
  • Publication number: 20150187771
    Abstract: An integrated circuit and method with a metal gate NMOS transistor with a high-k first gate dielectric on a high quality thermally grown interface dielectric and with a metal gate PMOS transistor with a high-k last gate dielectric on a chemically grown interface dielectric.
    Type: Application
    Filed: December 22, 2014
    Publication date: July 2, 2015
    Inventors: Hiroaki Niimi, Manoj Mehrotra, Mahalingam Nandakumar
  • Publication number: 20150187773
    Abstract: An integrated circuit containing an n-channel finFET and a p-channel finFET has a dielectric layer over a silicon substrate. The fins of the finFETs have semiconductor materials with higher mobilities than silicon. A fin of the n-channel finFET is on a first silicon-germanium buffer in a first trench through the dielectric layer on the substrate. A fin of the p-channel finFET is on a second silicon-germanium buffer in a second trench through the dielectric layer on the substrate. The fins extend at least 10 nanometers above the dielectric layer. The fins are formed by epitaxial growth on the silicon-germanium buffers in the trenches in the dielectric layer, followed by CMP planarization down to the dielectric layer. The dielectric layer is recessed to expose the fins. The fins may be formed concurrently or separately.
    Type: Application
    Filed: December 17, 2014
    Publication date: July 2, 2015
    Inventors: Hiroaki Niimi, Manoj Mehrotra, Rick L. Wise
  • Publication number: 20150187770
    Abstract: An integrated circuit containing an n-channel finFET and a p-channel finFET is formed by forming a first polarity fin epitaxial layer for a first polarity finFET, and subsequently forming a hard mask which exposes an area for a second, opposite, polarity fin epitaxial layer for a second polarity finFET. The second polarity fin epitaxial layer is formed in the area exposed by the hard mask. A fin mask defines the first polarity fin and second polarity fin areas, and a subsequent fin etch forms the respective fins. A layer of isolation dielectric material is formed over the substrate and fins. The layer of isolation dielectric material is planarized down to the fins. The layer of isolation dielectric material is recessed so that the fins extend at least 10 nanometers above the layer of isolation dielectric material. Gate dielectric layers and gates are formed over the fins.
    Type: Application
    Filed: December 17, 2014
    Publication date: July 2, 2015
    Inventors: Manoj Mehrotra, Charles Frank Machala, III, Rick L. Wise, Hiroaki Niimi
  • Publication number: 20150179783
    Abstract: The gate-to-source and gate-to-drain overlap capacitance of a MOS transistor with a metal gate and a high-k gate dielectric are reduced by forming the high-k gate dielectric along the inside of a sidewall structure which has been formed to lie further away from the source and the drain.
    Type: Application
    Filed: March 2, 2015
    Publication date: June 25, 2015
    Inventors: Manoj Mehrotra, Hiroaki Niimi
  • Publication number: 20150179654
    Abstract: A process of forming an integrated circuit containing a first transistor and a second transistor of the same polarity, by forming an epitaxial spacer layer over gates of both transistors, performing an epitaxial spacer anisotropic etch process to form epitaxial spacers on vertical surfaces adjacent to the first transistor gate and removing the epitaxial spacer layer from the second transistor gate, subsequently performing a source/drain etch process and a source/drain epitaxial process to form source/drain epitaxial regions in the substrate adjacent to the first and second gates, such that the first source/drain epitaxial regions are separated from the first gate by a lateral space which is at least 2 nanometers larger than a second lateral space separating the second source/drain epitaxial regions from the second gate. An integrated circuit formed by the recited process.
    Type: Application
    Filed: December 3, 2014
    Publication date: June 25, 2015
    Inventor: Manoj MEHROTRA
  • Patent number: 9000539
    Abstract: The gate-to-source and gate-to-drain overlap capacitance of a MOS transistor with a metal gate and a high-k gate dielectric are reduced by forming the high-k gate dielectric along the inside of a sidewall structure which has been formed to lie further away from the source and the drain.
    Type: Grant
    Filed: November 8, 2012
    Date of Patent: April 7, 2015
    Assignee: Texas Instruments Incorporated
    Inventors: Manoj Mehrotra, Hiroaki Niimi