Patents by Inventor Manu Gulati

Manu Gulati has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10261894
    Abstract: In an embodiment, a system on a chip (SOC) includes a component that remains powered when the remainder of the SOC is powered off. The component may include a sensor capture unit to capture data from various device sensors, and may filter the captured sensor data. Responsive to the filtering, the component may wake up the remainder of the SOC to permit the processing. The component may store programmable configuration data, matching the state at the time the SOC was most recently powered down, for the other components of the SOC, in order to reprogram them after wakeup. In some embodiments, the component may be configured to wake up the memory controller within the SOC and the path to the memory controller, in order to write the data to memory. The remainder of the SOC may remain powered down.
    Type: Grant
    Filed: March 2, 2017
    Date of Patent: April 16, 2019
    Assignee: Apple Inc.
    Inventors: Brijesh Tripathi, Shane J. Keil, Manu Gulati, Jung Wook Cho, Erik P. Machnicki, Gilbert H. Herbeck, Timothy J. Millet, Joshua P. de Cesare, Anand Dalal
  • Publication number: 20190012484
    Abstract: In one embodiment, a system includes a non-volatile memory that may serve as both the main memory system and the backing store (or persistent storage). In some embodiments, the non-volatile memory is divided into a main memory portion and a persistent portion. Data in the main memory operation may be encrypted using one or more first keys, and data in the persistent portion may be encrypted using one or more second keys, in an embodiment. The volatile behavior of main memory may be implemented by discarding the one or more first keys in a power down event or other event that indicates a loss of main memory data, while the one or more second keys may be retained. In one embodiment, the physical address space of the non-volatile memory may be a mapping from a second physical address space that is used within the system.
    Type: Application
    Filed: August 25, 2016
    Publication date: January 10, 2019
    Inventors: Manu Gulati, Joseph Sokol, Jr., Jeffrey R. Wilcox, Bernard J. Semeria, Michael J. Smith
  • Patent number: 10175905
    Abstract: Systems, apparatuses, and methods for improved memory controller power management techniques. An apparatus includes control logic, one or more memory controller(s), and one or more memory devices. If the amount of traffic and/or queue depth for a given memory controller falls below a threshold, the clock frequency supplied to the given memory controller and corresponding memory device(s) is reduced. In one embodiment, the clock frequency is reduced by one half. If the amount of traffic and/or queue depth rises above the threshold, then the clock frequency is increased back to its original frequency. The clock frequency may be adjusted by doubling the divisor used by a clock divider, which enables fast switching between the original rate and the reduced rate. This in turn allows for more frequent switching between the low power and normal power states, resulting in the memory controller and memory device operating more efficiently.
    Type: Grant
    Filed: September 13, 2016
    Date of Patent: January 8, 2019
    Assignee: Apple Inc.
    Inventors: Robert E. Jeter, Liang Deng, Kai Lun Hsiung, Manu Gulati, Rakesh L. Notani, Sukalpa Biswas, Venkata Ramana Malladi, Gregory S. Mathews, Enming Zheng, Fabien S. Faure
  • Publication number: 20180350369
    Abstract: In an embodiment, an integrated circuit may include one or more CPUs, a memory controller, and a circuit configured to remain powered on when the rest of the SOC is powered down. The circuit may be configured to receive audio samples from a microphone, and match those audio samples against a predetermined pattern to detect a possible command from a user of the device that includes the SOC. In response to detecting the predetermined pattern, the circuit may cause the memory controller to power up so that audio samples may be stored in the memory to which the memory controller is coupled. The circuit may also cause the CPUs to be powered on and initialized, and the operating system (OS) may boot. During the time that the CPUs are initializing and the OS is booting, the circuit and the memory may be capturing the audio samples.
    Type: Application
    Filed: August 13, 2018
    Publication date: December 6, 2018
    Inventors: Timothy J. Millet, Manu Gulati, Michael F. Culbert
  • Publication number: 20180314592
    Abstract: In one embodiment, a system includes a memory that includes a live section and a spares section. The live section may be mapped to the address space of the system, and may be accessed in response to memory operations. Once an entry in the live section has been detected as failed, an entry is in the spares section may be allocated to replace the failed entry. During subsequent accesses to the failed entry, the allocated entry may be used instead. In an embodiment, the failed entry may be coded with an indication of the allocated entry, to redirect to the allocated entry. In one implementation, for example, the failed entry may be coded with N copies of a pointer to the allocated entry, each copy protected by corresponding ECC.
    Type: Application
    Filed: July 9, 2018
    Publication date: November 1, 2018
    Inventors: Manu Gulati, Sukalpa Biswas, Jeffrey R. Wilcox, Farid Nemati
  • Publication number: 20180313673
    Abstract: In an embodiment, a system on a chip (SOC) includes a component that remains powered when the remainder of the SOC is powered off. The component may include a sensor capture unit to capture data from various device sensors, and may filter the captured sensor data. Responsive to the filtering, the component may wake up the remainder of the SOC to permit the processing. The component may store programmable configuration data, matching the state at the time the SOC was most recently powered down, for the other components of the SOC, in order to reprogram them after wakeup. In some embodiments, the component may be configured to wake up the memory controller within the SOC and the path to the memory controller, in order to write the data to memory. The remainder of the SOC may remain powered down.
    Type: Application
    Filed: June 26, 2018
    Publication date: November 1, 2018
    Inventors: Brijesh Tripathi, Shane J. Keil, Manu Gulati, Jung Wook Cho, Erik P. Machnicki, Gilbert H. Herbeck, Timothy J. Millet, Joshua P. de Cesare, Anand Dalal
  • Patent number: 10102607
    Abstract: One embodiment may include media circuits, an application processor, a direct memory access circuit (DMA), and a media managing circuit. The application processor may issue media commands into a queue. The media managing circuit may retrieve a first media command, set the DMA to copy data associated with the first media command to the first media circuit, and send the first media command to the first media circuit. While the first media command is being executed, the media managing circuit may also retrieve a second media command, determine that the second media command utilizes data that is dependent on a completion of the first media command, and set the DMA to copy data from the first media circuit to the second media circuit. After the first media command has been completed, the media managing circuit may also send the second media command to the second media circuit.
    Type: Grant
    Filed: August 31, 2017
    Date of Patent: October 16, 2018
    Assignee: Apple Inc.
    Inventors: Timothy J. Millet, Manu Gulati, Arthur L. Spence, Gurjeet S. Saund, Robert P. Esser
  • Patent number: 10079019
    Abstract: In an embodiment, an integrated circuit may include one or more CPUs, a memory controller, and a circuit configured to remain powered on when the rest of the SOC is powered down. The circuit may be configured to receive audio samples from a microphone, and match those audio samples against a predetermined pattern to detect a possible command from a user of the device that includes the SOC. In response to detecting the predetermined pattern, the circuit may cause the memory controller to power up so that audio samples may be stored in the memory to which the memory controller is coupled. The circuit may also cause the CPUs to be powered on and initialized, and the operating system (OS) may boot. During the time that the CPUs are initializing and the OS is booting, the circuit and the memory may be capturing the audio samples.
    Type: Grant
    Filed: December 17, 2013
    Date of Patent: September 18, 2018
    Assignee: Apple Inc.
    Inventors: Timothy J. Millet, Manu Gulati, Michael F. Culbert
  • Patent number: 10048720
    Abstract: In an embodiment, an integrated circuit such as an SOC (or even a discrete chip system) includes one or more local timebases in various locations. The timebases may be incremented based on a high frequency local clock that may be subject to variation during use due. Periodically, based on a lower frequency clock that is subject to less variation, the local timebases may be synchronized to the correct time, using hardware circuitry. In particular, the correct timebase value for the next synchronization may be transmitted to each local timebase, and the control circuit for the local timebase may be configured to saturate the local timebase at the correct value if the local timebase reaches the correct value before the synchronization occurs. Similarly, if the synchronization occurs and the local timebase has not reached the correct value, the control circuit may be configured to load the correct timebase value.
    Type: Grant
    Filed: December 5, 2017
    Date of Patent: August 14, 2018
    Assignee: Apple Inc.
    Inventors: Shu-Yi Yu, Erik P. Machnicki, Gilbert H. Herbeck, Kiran B. Kattel, Manu Gulati
  • Patent number: 10042701
    Abstract: In one embodiment, a system includes a memory that includes a live section and a spares section. The live section may be mapped to the address space of the system, and may be accessed in response to memory operations. Once an entry in the live section has been detected as failed, an entry is in the spares section may be allocated to replace the failed entry. During subsequent accesses to the failed entry, the allocated entry may be used instead. In an embodiment, the failed entry may be coded with an indication of the allocated entry, to redirect to the allocated entry. In one implementation, for example, the failed entry may be coded with N copies of a pointer to the allocated entry, each copy protected by corresponding ECC.
    Type: Grant
    Filed: September 22, 2016
    Date of Patent: August 7, 2018
    Assignee: Apple Inc.
    Inventors: Manu Gulati, Sukalpa Biswas, Jeffrey R. Wilcox, Farid Nemati
  • Patent number: 10031000
    Abstract: In an embodiment, a system on a chip (SOC) includes a component that remains powered when the remainder of the SOC is powered off. The component may include a sensor capture unit to capture data from various device sensors, and may filter the captured sensor data. Responsive to the filtering, the component may wake up the remainder of the SOC to permit the processing. The component may store programmable configuration data, matching the state at the time the SOC was most recently powered down, for the other components of the SOC, in order to reprogram them after wakeup. In some embodiments, the component may be configured to wake up the memory controller within the SOC and the path to the memory controller, in order to write the data to memory. The remainder of the SOC may remain powered down.
    Type: Grant
    Filed: August 13, 2014
    Date of Patent: July 24, 2018
    Assignee: Apple Inc.
    Inventors: Brijesh Tripathi, Shane J. Keil, Manu Gulati, Jung Wook Cho, Erik P. Machnicki, Gilbert H. Herbeck, Timothy J. Millet, Joshua P. de Cesare, Anand Dalal
  • Patent number: 9959124
    Abstract: In an embodiment, a system includes a functional unit that remains powered when the remainder of the system is powered off. The functional unit may, in response to a transition from a first power state to a second power state, retrieve configuration information from a read-only memory. In some embodiments, may be configured to store at least a portion of the configured information in a secure portion of a memory included in the functional unit and then lock the secure portion of the memory. The functional unit may then complete the transition to the second power state.
    Type: Grant
    Filed: September 26, 2014
    Date of Patent: May 1, 2018
    Assignee: Apple Inc.
    Inventors: Gilbert H. Herbeck, Manu Gulati, Erik P. Machnicki, Timothy R. Paaske
  • Publication number: 20180107240
    Abstract: In an embodiment, an integrated circuit such as an SOC (or even a discrete chip system) includes one or more local timebases in various locations. The timebases may be incremented based on a high frequency local clock that may be subject to variation during use due. Periodically, based on a lower frequency clock that is subject to less variation, the local timebases may be synchronized to the correct time, using hardware circuitry. In particular, the correct timebase value for the next synchronization may be transmitted to each local timebase, and the control circuit for the local timebase may be configured to saturate the local timebase at the correct value if the local timebase reaches the correct value before the synchronization occurs. Similarly, if the synchronization occurs and the local timebase has not reached the correct value, the control circuit may be configured to load the correct timebase value.
    Type: Application
    Filed: December 5, 2017
    Publication date: April 19, 2018
    Inventors: Shu-Yi Yu, Erik P. Machnicki, Gilbert H. Herbeck, Kiran B. Kattel, Manu Gulati
  • Patent number: 9928838
    Abstract: In an embodiment, a system on a chip (SOC) may include one or more central processing units (CPUs), a memory controller, and a circuit configured to remain powered on when the rest of the SOC is powered down. The circuit may be configured to receive audio samples and match those audio samples against a predetermined pattern. The circuit may operate according to a first clock during the time that the rest of the SOC is powered down. In response to detecting the predetermined pattern in the samples, the circuit may cause the memory controller and processors to power up. During the power up process, a second clock having one or more better characteristics than the first clock may become available. The circuit may switch to the second clock while preserving the samples, or losing at most one sample, or no more than a threshold number of samples.
    Type: Grant
    Filed: April 7, 2017
    Date of Patent: March 27, 2018
    Assignee: Apple Inc.
    Inventors: Manu Gulati, Gilbert H. Herbeck, Alexei E. Kosut, Girault W. Jones, Timothy J. Millet
  • Publication number: 20180074743
    Abstract: Systems, apparatuses, and methods for improved memory controller power management techniques. An apparatus includes control logic, one or more memory controller(s), and one or more memory devices. If the amount of traffic and/or queue depth for a given memory controller falls below a threshold, the clock frequency supplied to the given memory controller and corresponding memory device(s) is reduced. In one embodiment, the clock frequency is reduced by one half If the amount of traffic and/or queue depth rises above the threshold, then the clock frequency is increased back to its original frequency. The clock frequency may be adjusted by doubling the divisor used by a clock divider, which enables fast switching between the original rate and the reduced rate. This in turn allows for more frequent switching between the low power and normal power states, resulting in the memory controller and memory device operating more efficiently.
    Type: Application
    Filed: September 13, 2016
    Publication date: March 15, 2018
    Inventors: Robert E. Jeter, Liang Deng, Kai Lun Hsiung, Manu Gulati, Rakesh L. Notani, Sukalpa Biswas, Venkata Ramana Malladi, Gregory S. Mathews, Enming Zheng, Fabien S. Faure
  • Publication number: 20180063016
    Abstract: In some embodiments, a system includes a memory system, plurality of computing devices, and plurality of queues. The plurality of computing devices perform actions dependent on data stored at the memory device, where traffic between the plurality of computing devices and the memory device has at least a first priority level and a second priority level. The first priority level is higher than the second priority level. The plurality of queues pass data between the memory device and the plurality of computing devices. A particular queue allocates a first portion of the particular queue to traffic having the first priority level and allocates a second portion of the particular queue to traffic having the first priority level and to traffic having the second priority level.
    Type: Application
    Filed: August 24, 2016
    Publication date: March 1, 2018
    Inventors: Manu Gulati, Christopher D. Shuler, Benjamin K. Dodge, Thejasvi M. Vijayaraj, Harshavardhan Kaushikkar, Yang Yang, Rong Z. Hu, Srinivasa R. Sridharan, Wolfgang H. Klingauf, Neeraj Parik
  • Publication number: 20180032281
    Abstract: In some embodiments, a system includes a memory system, a real-time computing device, and a controller. The real-time computing device stores data within a local buffer having a corresponding storage threshold, where the data satisfies the storage threshold, and where the storage threshold is based on a latency of the memory system and an expected rate of utilization of the data of the local buffer. The controller detects that the memory system should perform an operation, where the memory system is unavailable to the real-time computing device during the operation. In response to detecting that an amount of time for the operation exceeds an amount of time corresponding to the storage threshold, the controller overrides the storage threshold. The controller may override the storage threshold by modifying the storage threshold and by overriding a default priority for access requests of the real-time computing device to the memory system.
    Type: Application
    Filed: August 1, 2016
    Publication date: February 1, 2018
    Inventors: Manu Gulati, Peter F. Holland, Erik P. Machnicki, Robert E. Jeter, Rakesh L. Notani, Neeraj Parik, Marc A. Schaub
  • Patent number: 9864399
    Abstract: In an embodiment, an integrated circuit such as an SOC (or even a discrete chip system) includes one or more local timebases in various locations. The timebases may be incremented based on a high frequency local clock that may be subject to variation during use due. Periodically, based on a lower frequency clock that is subject to less variation, the local timebases may be synchronized to the correct time, using hardware circuitry. In particular, the correct timebase value for the next synchronization may be transmitted to each local timebase, and the control circuit for the local timebase may be configured to saturate the local timebase at the correct value if the local timebase reaches the correct value before the synchronization occurs. Similarly, if the synchronization occurs and the local timebase has not reached the correct value, the control circuit may be configured to load the correct timebase value.
    Type: Grant
    Filed: December 10, 2015
    Date of Patent: January 9, 2018
    Assignee: Apple Inc.
    Inventors: Shu-Yi Yu, Erik P. Machnicki, Gilbert H. Herbeck, Kiran B. Kattel, Manu Gulati
  • Publication number: 20170365034
    Abstract: One embodiment may include media circuits, an application processor, a direct memory access circuit (DMA), and a media managing circuit. The application processor may issue media commands into a queue. The media managing circuit may retrieve a first media command, set the DMA to copy data associated with the first media command to the first media circuit, and send the first media command to the first media circuit. While the first media command is being executed, the media managing circuit may also retrieve a second media command, determine that the second media command utilizes data that is dependent on a completion of the first media command, and set the DMA to copy data from the first media circuit to the second media circuit. After the first media command has been completed, the media managing circuit may also send the second media command to the second media circuit.
    Type: Application
    Filed: August 31, 2017
    Publication date: December 21, 2017
    Inventors: Timothy J. Millet, Manu Gulati, Arthur L. Spence, Gurjeet S. Saund, Robert P. Esser
  • Patent number: 9829966
    Abstract: In an embodiment, a system includes a power management unit (PMU), a non-volatile memory, a volatile memory, and a processor. The PMU may be configured to generate a power supply voltage, change a state of a status signal responsive to an event, and reduce a voltage level of the power supply voltage responsive to a predetermined period of time elapsing from detecting the event. The system may be configured to transition from a first to a second operating mode responsive to the change of the state of the status signal, and cancel pending commands to the non-volatile memory responsive to the transition to the second operating mode. The non-volatile memory may be configured to complete active commands prior the predetermined period of time elapsing.
    Type: Grant
    Filed: September 15, 2014
    Date of Patent: November 28, 2017
    Assignee: Apple Inc.
    Inventors: Manu Gulati, Tristan R. Hudson, Parin Patel, Fabien Faure