Patents by Inventor Marc A. Bergendahl

Marc A. Bergendahl has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140110817
    Abstract: Fin structures and methods of manufacturing fin structures using a dual-material sidewall image transfer mask to enable patterning of sub-lithographic features is disclosed. The method of forming a plurality of fins includes forming a first set of fins having a first pitch. The method further includes forming an adjacent fin to the first set of fins. The adjacent fin and a nearest fin of the first set of fins have a second pitch larger than the first pitch. The first set of fins and the adjacent fin are sub-lithographic features formed using a sidewall image transfer process.
    Type: Application
    Filed: October 24, 2012
    Publication date: April 24, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Marc A. Bergendahl, David V. Horak, Charles W. Koburger, III, Shom Ponoth, Chih-Chao Yang
  • Publication number: 20140099792
    Abstract: Fin-defining spacers are formed on an array of mandrel structure. Mask material portions can be directionally deposited on fin-defining spacers located on one side of each mandrel structure, while not deposited on the other side. A photoresist layer is subsequently applied and patterned to form an opening, of which the overlay tolerance increases by a pitch of fin-defining spacers due to the mask material portions. Alternately, a conformal silicon oxide layer can be deposited on fin-defining spacers and structure-damaging ion implantation is performed only on fin-defining spacers located on one side of each mandrel structure. A photoresist layer is subsequently applied and patterned to form an opening, from which a damaged silicon oxide portion and an underlying fin-defining spacer are removed, while undamaged silicon oxide portions are not removed. An array of semiconductor fins including a vacancy can be formed by transferring the pattern into a semiconductor layer.
    Type: Application
    Filed: October 10, 2012
    Publication date: April 10, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Marc A. Bergendahl, David V. Horak, Charles W. Koburger, III, Shom Ponoth, Chih-Chao Yang
  • Patent number: 8629511
    Abstract: In a replacement gate scheme, after formation of a gate dielectric layer, a work function material layer completely fills a narrow gate trench, while not filling a wide gate trench. A dielectric material layer is deposited and planarized over the work function material layer, and is subsequently recessed to form a dielectric material portion overlying a horizontal portion of the work function material layer within the wide gate trench. The work function material layer is recessed employing the dielectric material portion as a part of an etch mask to form work function material portions. A conductive material is deposited and planarized to form gate conductor portions, and a dielectric material is deposited and planarized to form gate cap dielectrics.
    Type: Grant
    Filed: May 15, 2012
    Date of Patent: January 14, 2014
    Assignee: International Business Machines Corporation
    Inventors: Charles W. Koburger, III, Marc A. Bergendahl, David V. Horak, Shom Ponoth, Chih-Chao Yang
  • Publication number: 20130307086
    Abstract: In a replacement gate scheme, after formation of a gate dielectric layer, a work function material layer completely fills a narrow gate trench, while not filling a wide gate trench. A dielectric material layer is deposited and planarized over the work function material layer, and is subsequently recessed to form a dielectric material portion overlying a horizontal portion of the work function material layer within the wide gate trench. The work function material layer is recessed employing the dielectric material portion as a part of an etch mask to form work function material portions. A conductive material is deposited and planarized to form gate conductor portions, and a dielectric material is deposited and planarized to form gate cap dielectrics.
    Type: Application
    Filed: May 15, 2012
    Publication date: November 21, 2013
    Applicant: International Business Machines Corporation
    Inventors: Charles W. Koburger, III, Marc A. Bergendahl, David V. Horak, Shom Ponoth, Chih-Chao Yang
  • Publication number: 20130309857
    Abstract: In a replacement gate scheme, after formation of a gate dielectric layer, a work function material layer completely fills a narrow gate trench, while not filling a wide gate trench. A dielectric material layer is deposited and planarized over the work function material layer, and is subsequently recessed to form a dielectric material portion overlying a horizontal portion of the work function material layer within the wide gate trench. The work function material layer is recessed employing the dielectric material portion as a part of an etch mask to form work function material portions. A conductive material is deposited and planarized to form gate conductor portions, and a dielectric material is deposited and planarized to form gate cap dielectrics.
    Type: Application
    Filed: February 25, 2013
    Publication date: November 21, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Charles W. Koburger, III, Marc A. Bergendahl, David V. Horak, Shom Ponoth, Chih-Chao Yang
  • Publication number: 20130252419
    Abstract: A metal interconnect structure, which includes metal alloy capping layers, and a method of manufacturing the same. The originally deposited alloy capping layer element within the interconnect features will diffuse into and segregate onto top surface of the metal interconnect. The metal alloy capping material is deposited on a reflowed copper surface and is not physically in contact with sidewalls of the interconnect features. The metal alloy capping layer is also reflowed on the copper. Thus, there is a reduction in electrical resistivity impact from residual alloy elements in the interconnect structure. That is, there is a reduction, of alloy elements inside the features of the metal interconnect structure. The metal interconnect structure includes a dielectric layer with a recessed line, a liner material on sidewalls, a copper material, an alloy capping layer, and a dielectric cap.
    Type: Application
    Filed: May 11, 2013
    Publication date: September 26, 2013
    Applicant: International Business Machines Corporation
    Inventors: Chih-Chao Yang, Marc A. Bergendahl, Steven J. Holmes, David V. Horak, Charles W. Koburger, Shom Ponoth
  • Patent number: 8492274
    Abstract: A metal interconnect structure, which includes metal alloy capping layers, and a method of manufacturing the same. The originally deposited alloy capping layer element within the interconnect features will diffuse into and segregate onto top surface of the metal interconnect. The metal alloy capping material is deposited on a reflowed copper surface and is not physically in contact with sidewalls of the interconnect features. The metal alloy capping layer is also reflowed on the copper. Thus, there is a reduction in electrical resistivity impact from residual alloy elements in the interconnect structure. That is, there is a reduction, of alloy elements inside the features of the metal interconnect structure. The metal interconnect structure includes a dielectric layer with a recessed line, a liner material on sidewalls, a copper material, an alloy capping layer, and a dielectric cap.
    Type: Grant
    Filed: October 17, 2012
    Date of Patent: July 23, 2013
    Assignee: International Business Machines Corporation
    Inventors: Chih-Chao Yang, Marc A. Bergendahl, Steven J. Holmes, David V. Horak, Charles W. Koburger, III, Shom Ponoth
  • Patent number: 8003512
    Abstract: Methods and UBM structures having bilayer or trilayer UBM layers that include a thin TiW adhesion layer and a thick Ni-based barrier layer thereover both deposited under sputtering operating conditions that provide the resultant bilayer or trilayer UBM layers with minimal composite stresses. The Ni-based barrier layer may be pure Ni or a Ni alloy. These UBM layers may be patterned to fabricate bilayer or trilayer UBM capture pads, followed by joining a lead-free solder thereto for providing lead-free solder joints that maintain reliability after multiple reflows. Optionally, the top layer of the trilayer UBM structures may include soluble or insoluble metals for doping the lead-free solder connections.
    Type: Grant
    Filed: February 3, 2009
    Date of Patent: August 23, 2011
    Assignee: International Business Machines Corporation
    Inventors: Luc L. Belanger, Marc A. Bergendahl, Ajay P. Giri, Paul A. Lauro, Valerie A. Oberson, Da-Yuan Shih
  • Publication number: 20100193949
    Abstract: Methods and UBM structures having bilayer or trilayer UBM layers that include a thin TiW adhesion layer and a thick Ni-based barrier layer thereover both deposited under sputtering operating conditions that provide the resultant bilayer or trilayer UBM layers with minimal composite stresses. The Ni-based barrier layer may be pure Ni or a Ni alloy. These UBM layers may be patterned to fabricate bilayer or trilayer UBM capture pads, followed by joining a lead-free solder thereto for providing lead-free solder joints that maintain reliability after multiple reflows. Optionally, the top layer of the trilayer UBM structures may include soluble or insoluble metals for doping the lead-free solder connections.
    Type: Application
    Filed: February 3, 2009
    Publication date: August 5, 2010
    Applicant: International Business Machines Corporation
    Inventors: Luc L. Belanger, Marc A. Bergendahl, Ajay P. Giri, Paul A. Lauro, Valerie A. Oberson, Da-Yuan Shih
  • Patent number: 7164470
    Abstract: An optical device inspection system and method employing a narrow aperture on a magnifying objective lens in order to reduce the circle of confusion and increase the depth of field. The smaller aperture resulting in an increase in depth of field allows for simultaneous focus for all portions of objects being inspected. An arc lamp with an elliptical reflector in combination with a condenser lens focuses a more intense beam of light through the objective lens, thereby providing sufficient brightness without sacrificing any depth of field.
    Type: Grant
    Filed: October 14, 2003
    Date of Patent: January 16, 2007
    Assignee: Bausch & Lomb Incorporated
    Inventors: Marc Bergendahl, David Lewison, Raymond H. Puffer, Jr.
  • Patent number: 7079239
    Abstract: A method and apparatus for an inspection cell that allows contact lenses to be presented in a known orientation to an operator or vision system for inspection. The cell can be tipped to allow the inspected lens to be placed into a known pick-cup location upon passing inspection, or if the lens does not pass inspection, it can be discarded. The placement or discarding of the lens can be readily automated by selecting the rate at which the cell is tipped.
    Type: Grant
    Filed: October 7, 2003
    Date of Patent: July 18, 2006
    Assignee: Bausch & Lomb Incorporated
    Inventors: Marc Bergendahl, David Lewison, Raymond H. Puffer, Jr.
  • Publication number: 20050078302
    Abstract: An optical device inspection system and method employing a narrow aperture on a magnifying objective lens in order to reduce the circle of confusion and increase the depth of field. The smaller aperture resulting in an increase in depth of field allows for simultaneous focus for all portions of objects being inspected. An arc lamp with an elliptical reflector in combination with a condenser lens focuses a more intense beam of light through the objective lens, thereby providing sufficient brightness without sacrificing any depth of field.
    Type: Application
    Filed: October 14, 2003
    Publication date: April 14, 2005
    Inventors: Marc Bergendahl, David Lewison, Raymond Puffer
  • Publication number: 20050073677
    Abstract: A method and apparatus for an inspection cell that allows contact lenses to be presented in a known orientation to an operator or vision system for inspection. The cell can be tipped to allow the inspected lens to be placed into a known pickup pick-cup location upon passing inspection, or if the lens does not pass inspection, it can be discarded. The placement or discarding of the lens can be readily automated by selecting the rate at which the cell is tipped.
    Type: Application
    Filed: October 7, 2003
    Publication date: April 7, 2005
    Inventors: Marc Bergendahl, David Lewison, Raymond Puffer
  • Patent number: 6729835
    Abstract: An assembly for orienting and fixturing an array of contact lenses in a lens-fixturing tray to enable automated picking of the lenses includes an array of tubes to which a first support tray having an array of lens receptacles each having a respective contact lens therein is removably mounted. A lens-fixturing tray having an array of lens receptacles is removably mounted to the other end of the tubes and the assembly is rotated and submerged in a fluid bath whereby the lenses release from the first support tray and float downwardly through a respective tube coming to rest in a centered, concave side-up position in a respective receptacle of the lens-fixturing tray.
    Type: Grant
    Filed: March 28, 2002
    Date of Patent: May 4, 2004
    Assignee: Bausch & Lomb Incorporated
    Inventors: William J. Appleton, Marc Bergendahl, Ted Foos, David Lewison, Raymond H. Puffer, Jr., Sunil Singh
  • Publication number: 20030185662
    Abstract: An assembly for orienting and fixturing an array of contact lenses in a lens-fixturing tray to enable automated picking of the lenses includes an array of tubes to which a first support tray having an array of lens receptacles each having a respective contact lens therein is removably mounted. A lens-fixturing tray having an array of lens receptacles is removably mounted to the other end of the tubes and the assembly is rotated and submerged in a fluid bath whereby the lenses release from the first support tray and float downwardly through a respective tube coming to rest in a centered, concave side-up position in a respective receptacle of the lens-fixturing tray.
    Type: Application
    Filed: March 28, 2002
    Publication date: October 2, 2003
    Inventors: William J. Appleton, Marc Bergendahl, Ted Foos, David Lewison, Raymond H. Puffer, Sunil Singh