Patents by Inventor Marc A. Bergendahl

Marc A. Bergendahl has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180308978
    Abstract: Transistors and methods of forming the same include forming a semiconductor fin from a first material on dielectric layer. Material is etched away from the dielectric layer directly underneath a channel region of the semiconductor fin, with the semiconductor fin still being supported by the dielectric layer in a source and drain region. A gate stack is formed around the channel region of the semiconductor fin, with a portion of the gate stack underneath the semiconductor fin being larger than a portion of the gate stack above the semiconductor fin.
    Type: Application
    Filed: April 24, 2017
    Publication date: October 25, 2018
    Inventors: Marc A. Bergendahl, Kangguo Cheng, Gauri Karve, Fee Li Lie, Eric R. Miller, John R. Sporre, Sean Teehan
  • Publication number: 20180294263
    Abstract: A method of forming a semiconductor device that includes forming a trench adjacent to a gate structure to expose a contact surface of one of a source region and a drain region. A sacrificial spacer may be formed on a sidewall of the trench and on a sidewall of the gate structure. A metal contact may then be formed in the trench to at least one of the source region and the drain region. The metal contact has a base width that is less than an upper surface width of the metal contact. The sacrificial spacer may be removed, and a substantially conformal dielectric material layer can be formed on sidewalls of the metal contact and the gate structure. Portions of the conformally dielectric material layer contact one another at a pinch off region to form an air gap between the metal contact and the gate structure.
    Type: Application
    Filed: June 7, 2018
    Publication date: October 11, 2018
    Inventors: Marc A. Bergendahl, Kangguo Cheng, Fee Li Lie, Eric R. Miller, John R. Sporre, Sean Teehan
  • Patent number: 10083961
    Abstract: A method of forming a power rail to semiconductor devices comprising removing a portion of the gate structure forming a gate cut trench separating a first active region of fin structures from a second active region of fin structures. A conformal etch stop layer is formed in the gate cut trench. A fill material is formed on the conformal etch stop layer filling at least a portion of the gate cut trench. The fill material has a composition that is etched selectively to the conformal etch stop layer. A power rail is formed in the gate cut trench. The conformal etch stop layer obstructs lateral etching during forming the power rail to substantially eliminate power rail to gate structure shorting.
    Type: Grant
    Filed: September 7, 2016
    Date of Patent: September 25, 2018
    Assignee: International Business Machines Corporation
    Inventors: Marc A. Bergendahl, Andrew M. Greene, Rajasekhar Venigalla
  • Patent number: 10083908
    Abstract: A method of forming an electrical device that includes forming a first level including an array of metal lines, wherein an air gap is positioned between the adjacent metal lines. A second level is formed including at least one dielectric layer atop the first level. A plurality of trench structures is formed in the at least on dielectric layer. At least one of the plurality of trench structures opens the air gap. A conductive material is formed within the trenches. The conductive material deposited in the open air gap provides a vertical fuse.
    Type: Grant
    Filed: April 5, 2017
    Date of Patent: September 25, 2018
    Assignee: International Business Machines Corporation
    Inventors: Marc A. Bergendahl, James J. Demarest, Christopher J. Penny, Christopher J. Waskiewicz
  • Patent number: 10074730
    Abstract: A semiconductor device comprises a nanowire arranged over a substrate, a gate stack arranged around the nanowire, a spacer arranged along a sidewall of the gate stack, a cavity defined by a distal end of the nanowire and the spacer, and a source/drain region partially disposed in the cavity and in contact with the distal end of the nanowire.
    Type: Grant
    Filed: January 28, 2016
    Date of Patent: September 11, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Marc A. Bergendahl, Kangguo Cheng, Fee Li Lie, Eric R. Miller, Jeffrey C. Shearer, John R. Sporre, Sean Teehan
  • Publication number: 20180240752
    Abstract: A method of forming an electrical device that includes forming a first level including an array of metal lines, wherein an air gap is positioned between the adjacent metal lines. A second level is formed including at least one dielectric layer atop the first level. A plurality of trench structures is formed in the at least on dielectric layer. At least one of the plurality of trench structures opens the air gap. A conductive material is formed within the trenches. The conductive material deposited in the open air gap provides a vertical fuse.
    Type: Application
    Filed: April 18, 2018
    Publication date: August 23, 2018
    Inventors: Marc A. Bergendahl, James J. Demarest, Christopher J. Penny, Christopher J. Waskiewicz
  • Patent number: 10043801
    Abstract: A method of forming a semiconductor device that includes forming a trench adjacent to a gate structure to expose a contact surface of one of a source region and a drain region. A sacrificial spacer may be formed on a sidewall of the trench and on a sidewall of the gate structure. A metal contact may then be formed in the trench to at least one of the source region and the drain region. The metal contact has a base width that is less than an upper surface width of the metal contact. The sacrificial spacer may be removed, and a substantially conformal dielectric material layer can be formed on sidewalls of the metal contact and the gate structure. Portions of the conformally dielectric material layer contact one another at a pinch off region to form an air gap between the metal contact and the gate structure.
    Type: Grant
    Filed: October 18, 2017
    Date of Patent: August 7, 2018
    Assignee: International Business Machines Corporation
    Inventors: Marc A. Bergendahl, Kangguo Cheng, Fee Li Lie, Eric R. Miller, John R. Sporre, Sean Teehan
  • Publication number: 20180219101
    Abstract: A nano-sheet semiconductor structure and a method for fabricating the same. The nano-sheet structure includes a substrate and at least one alternating stack of semiconductor material layers and metal gate material layers. The nano-sheet semiconductor structure further comprises a source region and a drain region. A first plurality of epitaxially grown interconnects contacts the source region and the semiconductor layers in the alternating stack. A second plurality of epitaxially grown interconnects contacts the drain region and the semiconductor layers in the alternating stack. The method includes removing a portion of alternating semiconductor layers and metal gate material layers. A first plurality of interconnects is epitaxially grown between and in contact with the semiconductor layers and the source region. A second plurality of interconnects is epitaxially grown between and in contact with the semiconductor layers and the drain region.
    Type: Application
    Filed: March 28, 2018
    Publication date: August 2, 2018
    Inventors: Marc A. Bergendahl, Kangguo Cheng, Eric R. Miller, John R. Sporre, Sean Teehan
  • Patent number: 10026615
    Abstract: Methods of forming semiconductor fins include forming first spacers on a first sidewall of each of a plurality of mandrels using an angled deposition process. A second sidewall of one or more of the plurality of mandrels is masked. Second spacers are formed on a second sidewall of all unmasked mandrels. The second sidewall of the one or more of the plurality of mandrels is unmasked. The mandrels are etched away. Fins are formed from a substrate using the first and second spacers as a mask.
    Type: Grant
    Filed: May 12, 2016
    Date of Patent: July 17, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Marc A. Bergendahl, Kangguo Cheng, John R. Sporre, Sean Teehan
  • Publication number: 20180197739
    Abstract: Methods of forming semiconductor fins include forming first spacers on a first sidewall of each of multiple mandrels using an angled deposition process. A second sidewall of one or more of the mandrels is masked in a finless region. Second spacers are formed on a second sidewall of all unmasked mandrels. Semiconductor fins are formed from a substrate using the first and second spacers as a pattern mask.
    Type: Application
    Filed: March 5, 2018
    Publication date: July 12, 2018
    Inventors: Marc A. Bergendahl, Kangguo Cheng, John R. Sporre, Sean Teehan
  • Publication number: 20180190491
    Abstract: Methods of forming semiconductor fins include forming first spacers on a first sidewall of each of a plurality of mandrels using a directional deposition process. A finless region is masked by forming a mask on a second sidewall of one or more of the plurality of mandrels. Second spacers are formed on a second sidewall of unmasked mandrels using a directional deposition process. The finless region is unmasked and each of the plurality of mandrels is etched away. Fins are formed from a substrate using the first and second spacers as a mask, such that no fins are formed in the finless region.
    Type: Application
    Filed: February 28, 2018
    Publication date: July 5, 2018
    Inventors: Marc A. Bergendahl, Kangguo Cheng, John R. Sporre, Sean Teehan
  • Patent number: 10014391
    Abstract: Techniques relate to a gate stack for a semiconductor device. A vertical fin is formed on a substrate. The vertical fin has an upper portion and a bottom portion. The upper portion of the vertical fin has a recessed portion on sides of the upper portion. A gate stack is formed in the recessed portion of the upper portion of the vertical fin.
    Type: Grant
    Filed: June 28, 2016
    Date of Patent: July 3, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Marc A. Bergendahl, Kangguo Cheng, Fee Li Lie, Eric R. Miller, John R. Sporre, Sean Teehan
  • Patent number: 10002762
    Abstract: Multi-angled deposition and masking techniques are provided to enable custom trimming and selective removal of spacers that are used for patterning features at sub-lithographic dimensions. For example, a method includes forming a sacrificial mandrel on a substrate, and forming first and second spacers on opposing sidewalls of the sacrificial mandrel. The first and second spacers are formed with an initial thickness TS. A first angle deposition process is performed to deposit a material (e.g., insulating material or metallic material) at a first deposition angle A1 to form a first trim mask layer on an upper portion of the first spacer and the sacrificial mandrel while preventing the material from being deposited on the second spacer. A spacer etch process is performed to trim the first spacer to a first thickness T1, which is less than TS, using the first trim mask layer as an etch mask.
    Type: Grant
    Filed: September 9, 2016
    Date of Patent: June 19, 2018
    Assignee: International Business Machines Corporation
    Inventors: Marc A. Bergendahl, Sean D. Burns, Lawrence A. Clevenger, Christopher J. Penny, Michael Rizzolo
  • Patent number: 9997454
    Abstract: A method of forming an electrical device that includes forming a first level including an array of metal lines, wherein an air gap is positioned between the adjacent metal lines. A second level is formed including at least one dielectric layer atop the first level. A plurality of trench structures is formed in the at least on dielectric layer. At least one of the plurality of trench structures opens the air gap. A conductive material is formed within the trenches. The conductive material deposited in the open air gap provides a vertical fuse.
    Type: Grant
    Filed: November 22, 2016
    Date of Patent: June 12, 2018
    Assignee: International Business Machines Corporation
    Inventors: Marc A. Bergendahl, James J. Demarest, Christopher J. Penny, Christopher J. Waskiewicz
  • Publication number: 20180158818
    Abstract: A method of forming a semiconductor device that includes forming a trench adjacent to a gate structure to expose a contact surface of one of a source region and a drain region. A sacrificial spacer may be formed on a sidewall of the trench and on a sidewall of the gate structure. A metal contact may then be formed in the trench to at least one of the source region and the drain region. The metal contact has a base width that is less than an upper surface width of the metal contact. The sacrificial spacer may be removed, and a substantially conformal dielectric material layer can be formed on sidewalls of the metal contact and the gate structure. Portions of the conformally dielectric material layer contact one another at a pinch off region to form an air gap between the metal contact and the gate structure.
    Type: Application
    Filed: October 18, 2017
    Publication date: June 7, 2018
    Inventors: Marc A. Bergendahl, Kangguo Cheng, Fee Li Lie, Eric R. Miller, John R. Sporre, Sean Teehan
  • Patent number: 9991117
    Abstract: Methods of forming semiconductor fins include forming first spacers on a first sidewall of each of a plurality of mandrels using an angled deposition process. A second sidewall of one or more of the plurality of mandrels is masked. Second spacers are formed on a second sidewall of all unmasked mandrels. The second sidewall of the one or more of the plurality of mandrels is unmasked. The mandrels are etched away. Fins are formed from a substrate using the first and second spacers as a mask.
    Type: Grant
    Filed: June 20, 2017
    Date of Patent: June 5, 2018
    Assignee: International Business Machines Corporation
    Inventors: Marc A. Bergendahl, Kangguo Cheng, John R. Sporre, Sean Teehan
  • Patent number: 9985138
    Abstract: A nano-sheet semiconductor structure and a method for fabricating the same. The nano-sheet structure includes a substrate and at least one alternating stack of semiconductor material layers and metal gate material layers. The nano-sheet semiconductor structure further comprises a source region and a drain region. A first plurality of epitaxially grown interconnects contacts the source region and the semiconductor layers in the alternating stack. A second plurality of epitaxially grown interconnects contacts the drain region and the semiconductor layers in the alternating stack. The method includes removing a portion of alternating semiconductor layers and metal gate material layers. A first plurality of interconnects is epitaxially grown between and in contact with the semiconductor layers and the source region. A second plurality of interconnects is epitaxially grown between and in contact with the semiconductor layers and the drain region.
    Type: Grant
    Filed: May 10, 2017
    Date of Patent: May 29, 2018
    Assignee: International Business Machines Corporation
    Inventors: Marc A. Bergendahl, Kangguo Cheng, Eric R. Miller, John R. Sporre, Sean Teehan
  • Patent number: 9984877
    Abstract: Methods of forming semiconductor fins include forming first spacers on a first sidewall of each of a plurality of mandrels using an angled deposition process. A second sidewall of one or more of the plurality of mandrels is masked. Second spacers are formed on a second sidewall of all unmasked mandrels. The second sidewall of the one or more of the plurality of mandrels is unmasked. The mandrels are etched away. Fins are formed from a substrate using the first and second spacers as a mask.
    Type: Grant
    Filed: June 20, 2017
    Date of Patent: May 29, 2018
    Assignee: International Business Machines Corporation
    Inventors: Marc A. Bergendahl, Kangguo Cheng, John R. Sporre, Sean Teehan
  • Publication number: 20180122892
    Abstract: A backend-of-the-line (BEOL) semiconductor capacitor made by method, apparatus, or computer program product, through an airgap metallization process, patterning a first electrode by removing a portion of inter-layer dielectric for a desired capacitor area, depositing a dielectric for a capacitor insulator, filling the desired capacitor area to form a second electrode, polishing and capping the second electrode, and interconnecting the first electrode and the second electrode.
    Type: Application
    Filed: December 28, 2017
    Publication date: May 3, 2018
    Inventors: Marc A. Bergendahl, James J. Demarest, Christopher J. Penny, Christopher Waskiewicz
  • Publication number: 20180083118
    Abstract: A method and structures are used to fabricate a nanosheet semiconductor device. Nanosheet fins including nanosheet stacks including alternating silicon (Si) layers and silicon germanium (SiGe) layers are formed on a substrate and etched to define a first end and a second end along a first axis between which each nanosheet fin extends parallel to every other nanosheet fin. The SiGe layers are undercut in the nanosheet stacks at the first end and the second end to form divots, and a dielectric is deposited in the divots. The SiGe layers between the Si layers are removed before forming source and drain regions of the nanosheet semiconductor device such that there are gaps between the Si layers of each nanosheet stack, and the dielectric anchors the Si layers. The gaps are filled with an oxide that is removed after removing the dummy gate and prior to forming the replacement gate.
    Type: Application
    Filed: November 18, 2016
    Publication date: March 22, 2018
    Inventors: Marc A. Bergendahl, Kangguo Cheng, Fee Li Lie, Eric R. Miller, John R. Sporre, Sean Teehan