Patents by Inventor Marco Francesco Aimi

Marco Francesco Aimi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20090159410
    Abstract: A MEMS switch includes a substrate, a movable actuator coupled to the substrate, a substrate contact, a substrate electrode, and a conductive stopper electrically coupled to the movable actuator and structured to prevent the movable actuator from contacting the substrate electrode while allowing the movable actuator to make contact with the substrate contact.
    Type: Application
    Filed: December 20, 2007
    Publication date: June 25, 2009
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Xuefeng Wang, Kanakasabapathi Subramanian, Christopher Fred Keimel, Marco Francesco Aimi, Kuna Venkat Satya Rama Kishore, Glenn Scott Claydon, Oliver Charles Boomhower, Parag Thakre
  • Publication number: 20090159409
    Abstract: In accordance with one aspect of the present invention, a MEMS switch is provided. The MEMS switch includes a substrate, a first and a second actuating element electrically coupled together, an anchor mechanically coupled to the substrate and supporting at least one of the first and second actuating elements, and a gate driver configured to actuate the first and second actuating elements.
    Type: Application
    Filed: December 20, 2007
    Publication date: June 25, 2009
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Christopher Fred Keimel, Xuefeng Wang, Marco Francesco Aimi, Kanakasabapathi Subramanian
  • Publication number: 20090160584
    Abstract: A MEMS switch is provided including a substrate, a movable actuator coupled to the substrate and having a first side and a second side, a first fixed electrode coupled to the substrate and positioned on the first side of the movable actuator to generate a first actuation force to pull the movable actuator toward a conduction state, and a second fixed electrode coupled to the substrate and positioned on the second side of the movable actuator to generate a second actuation force to pull the movable actuator toward a non-conducting state.
    Type: Application
    Filed: December 21, 2007
    Publication date: June 25, 2009
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: William James Premerlani, Christopher Fred Keimel, Kanakasabapathi Subramanian, Xuefeng Wang, Marco Francesco Aimi
  • Publication number: 20090107812
    Abstract: An electrical through-connection, or via, that passes through a substrate to a bus on a first surface of the substrate. The via may be configured with an interlock such that the electrically conductive core of the via is constrained to thermally expand towards the second surface, away from the bus, thus preventing damage to the bus. The interlock may be a local constriction or enlargement of the via near the first surface of the substrate. The via may be greater in length along the bus than a unit spacing of beams in a parallel microswitch array actuated in unison along the bus. The via may be narrower in width than in length, and may form a trapezoidal geometry that is larger at the second surface of the substrate than at the first surface.
    Type: Application
    Filed: October 24, 2007
    Publication date: April 30, 2009
    Inventors: David Cecil Hays, Marco Francesco Aimi, Christopher Fred Keimel, Glenn Scott Claydon, Kanakasabapathi Subramanian, Oliver Charles Boomhower
  • Publication number: 20090096088
    Abstract: Multiple microelectromechanical systems (MEMS) on a substrate are capped with a cover using a layer that may function as a bonding agent, separation layer, and hermetic seal. A substrate has a first side with multiple MEMS devices. A cover is formed with through-holes for vias, and with standoff posts for layer registration and separation. An adhesive sheet is patterned with cutouts for the MEMS devices, vias, and standoff posts. The adhesive sheet is tacked to the cover, then placed on the MEMS substrate and heated to bond the layers. The via holes may be metalized with leads for circuit board connection. The MEMS units may be diced from the substrate after sealing, thus protecting them from contaminants.
    Type: Application
    Filed: October 15, 2007
    Publication date: April 16, 2009
    Inventors: MARCO FRANCESCO AIMI, Chirstopher James Kapusta, Arun Virupaksha Gowda, David Cecil Hays, Oliver Charles Boomhower, Glenn Scott Claydon, Joseph Alfred Iannotti, Christopher Fred Keimel
  • Publication number: 20080232745
    Abstract: A method for assembling a Fabry-Perot interferometer includes depositing a first metal layer on an end portion of a ferrule, depositing a second metal layer on a back portion of a die, placing the first metal layer and the second metal layer in contact with each other with respective first and second orifices aligned with respect to each other, and bonding the ferrule to the die by thermo compression. The resulting interferometer includes a glass die with a cavity, a silicon diaphragm disposed over the opening of the cavity and bonded to the glass die, a ferrule bonded to the glass die by thermo compression with the first and second orifices being aligned to each other, and an optical fiber inserted through the other end of the ferrule in direct contact to a back portion of the die and aligned with the first orifice.
    Type: Application
    Filed: March 19, 2007
    Publication date: September 25, 2008
    Inventors: Aaron Jay Knobloch, David Mulford Shaddock, David Richard Esler, Marco Francesco Aimi, Douglas S. Byrd, David Robert O'Connor, Stacey Joy Kennerly