Patents by Inventor Mariam Sadaka

Mariam Sadaka has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20080054304
    Abstract: A semiconductor device including a lateral field-effect transistor and Schottky diode and method of forming the same. In one embodiment, the lateral field-effect transistor includes a buffer layer having a contact covering a substantial portion of a bottom surface thereof, a lateral channel above the buffer layer, another contact above the lateral channel, and an interconnect that connects the lateral channel to the buffer layer. The semiconductor device also includes a Schottky diode parallel-coupled to the lateral field-effect transistor including a cathode formed from another buffer layer interposed between the buffer layer and the lateral channel, a Schottky interconnect interposed between the another buffer layer and the another contact, and an anode formed on a surface of the Schottky interconnect operable to connect the anode to the another contact. The semiconductor device may also include an isolation layer interposed between the buffer layer and the lateral channel.
    Type: Application
    Filed: October 2, 2007
    Publication date: March 6, 2008
    Inventors: Mariam Sadaka, Berinder Brar, Wonill Ha, Chanh Nguyen
  • Publication number: 20080048173
    Abstract: A semiconductor device including a lateral field-effect transistor and Schottky diode and method of forming the same. In one embodiment, the lateral field-effect transistor includes a buffer layer having a contact covering a substantial portion of a bottom surface thereof, a lateral channel above the buffer layer, another contact above the lateral channel, and an interconnect that connects the lateral channel to the buffer layer. The semiconductor device also includes a Schottky diode parallel-coupled to the lateral field-effect transistor including a cathode formed from another buffer layer interposed between the buffer layer and the lateral channel, a Schottky interconnect interposed between the another buffer layer and the another contact, and an anode formed on a surface of the Schottky interconnect operable to connect the anode to the another contact. The semiconductor device may also include an isolation layer interposed between the buffer layer and the lateral channel.
    Type: Application
    Filed: October 2, 2007
    Publication date: February 28, 2008
    Inventors: Mariam Sadaka, Berinder Brar, Wonill Ha, Chanh Nguyen
  • Publication number: 20080048174
    Abstract: A semiconductor device including a lateral field-effect transistor and Schottky diode and method of forming the same. In one embodiment, the lateral field-effect transistor includes a buffer layer having a contact covering a substantial portion of a bottom surface thereof, a lateral channel above the buffer layer, another contact above the lateral channel, and an interconnect that connects the lateral channel to the buffer layer. The semiconductor device also includes a Schottky diode parallel-coupled to the lateral field-effect transistor including a cathode formed from another buffer layer interposed between the buffer layer and the lateral channel, a Schottky interconnect interposed between the another buffer layer and the another contact, and an anode formed on a surface of the Schottky interconnect operable to connect the anode to the another contact. The semiconductor device may also include an isolation layer interposed between the buffer layer and the lateral channel.
    Type: Application
    Filed: October 2, 2007
    Publication date: February 28, 2008
    Inventors: Mariam Sadaka, Berinder Brar, Wonill Ha, Chanh Nguyen
  • Publication number: 20070272952
    Abstract: An electronic device can include a first semiconductor portion and a second semiconductor portion, wherein the compositions of the first and second semiconductor portions are different from each other. In one embodiment, the first and second semiconductor portions can have different stresses compared to each other. In one embodiment, the electronic device may be formed by forming an oxidation mask over the first semiconductor portion. A second semiconductor layer can be formed over the second semiconductor portion of the first semiconductor layer and have a different composition compared to the first semiconductor layer. An oxidation can be performed, and a concentration of a semiconductor element (e.g., germanium) within the second portion of the first semiconductor layer can be increased. In another embodiment, a selective condensation may be performed, and a field isolation region can be formed between the first and second portions of the first semiconductor layer.
    Type: Application
    Filed: August 10, 2007
    Publication date: November 29, 2007
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Voon-Yew Thean, Brian Goolsby, Linda McCormick, Bich-Yen Nguyen, Colita Parker, Mariam Sadaka, Victor Vartanian, Ted White, Melissa Zavala
  • Publication number: 20070241403
    Abstract: A substrate includes a first region and a second region. The first region comprises a III-nitride layer, and the second region comprises a first semiconductor layer. A first transistor (such as an n-type transistor) is formed in and on the III-nitride layer, and a second transistor (such as a p-type transistor) is formed in and on the first semiconductor layer. The III-nitride layer may be indium nitride. In the first region, the substrate may include a second semiconductor layer, a graded transition layer over the second semiconductor layer, and a buffer layer over the transition layer, where the III-nitride layer is over the buffer layer. In the second region, the substrate may include the second semiconductor layer and an insulating layer over the second semiconductor layer, where the first semiconductor layer is over the insulating layer.
    Type: Application
    Filed: April 12, 2006
    Publication date: October 18, 2007
    Inventors: Voon-Yew Thean, Bich-Yen Nguyen, Mariam Sadaka, Victor Vartanian, Ted White
  • Publication number: 20070238233
    Abstract: A method of having transistors formed in enhanced performance crystal orientations begins with a wafer having a semiconductor substrate (12,52) of a first surface orientation, a thin etch stop layer (14,54) on the semiconductor substrate, a buried oxide layer (16,56) on the thin etch stop layer, and a semiconductor layer (18,58) of a second surface orientation on the buried oxide layer. An etch penetrates to the thin etch stop layer. Another etch, which is chosen to minimize the damage to the underlying semiconductor substrate, exposes a portion of the semiconductor substrate. An epitaxial semiconductor (28,66) is then grown from the exposed portion of the semiconductor substrate to form a semiconductor region having the first surface orientation and having few, if any, defects. The epitaxially grown semiconductor region is then used for enhancing one type of transistor while the semiconductor layer of the second surface orientation is used for enhancing a different type of transistor.
    Type: Application
    Filed: March 30, 2006
    Publication date: October 11, 2007
    Inventors: Mariam Sadaka, Bich-Yen Nguyen, Ted White
  • Publication number: 20070235807
    Abstract: Two different transistors types are made on different crystal orientations in which both are formed on SOI. A substrate has an underlying semiconductor layer of one of the crystal orientations and an overlying layer of the other crystal orientation. The underlying layer has a portion exposed on which is epitaxially grown an oxygen-doped semiconductor layer that maintains the crystalline structure of the underlying semiconductor layer. A semiconductor layer is then epitaxially grown on the oxygen-doped semiconductor layer. An oxidation step at elevated temperatures causes the oxide-doped region to separate into oxide and semiconductor regions. The oxide region is then used as an insulation layer in an SOI structure and the overlying semiconductor layer that is left is of the same crystal orientation as the underlying semiconductor layer. Transistors of the different types are formed on the different resulting crystal orientations.
    Type: Application
    Filed: May 1, 2007
    Publication date: October 11, 2007
    Applicant: Freescale Semiconductor, Inc.
    Inventors: Ted White, Alexander Barr, Bich-Yen Nguyen, Marius Orlowski, Mariam Sadaka, Voon-Yew Thean
  • Publication number: 20070218659
    Abstract: A semiconductor process and apparatus provide a planarized hybrid substrate (225) having a more uniform polish surface (300) by thickening an SOI semiconductor layer (210) in relation to a previously or subsequently formed epitaxial silicon layer (220) with a selective silicon deposition process that covers the SOI semiconductor layer (210) with a crystalline semiconductor layer (216). By forming first gate electrodes (151) over a first SOI substrate (90) using deposited (100) silicon and forming second gate electrodes (161) over an epitaxially grown (110) silicon substrate (70), a high performance CMOS device is obtained which includes high-k metal PMOS gate electrodes (161) having improved hole mobility.
    Type: Application
    Filed: March 14, 2006
    Publication date: September 20, 2007
    Inventors: Gregory Spencer, Peter Beckage, Mariam Sadaka, Veer Dhandapani
  • Publication number: 20070218707
    Abstract: A process of forming an electronic device can include forming a patterned oxidation-resistant layer over a semiconductor layer that overlies a substrate, and patterning the semiconductor layer to form a semiconductor island. The semiconductor island includes a first surface and a second surface opposite the first surface, and the first surface lies closer to the substrate, as compared to the second surface. The process can also include forming an oxidation-resistant material along a side of the semiconductor island or selectively depositing a semiconductor material along a side of the semiconductor island. The process can further include exposing the patterned oxidation-resistant layer and the semiconductor island to an oxygen-containing ambient, wherein a first portion of the semiconductor island along the first surface is oxidized during exposing the patterned oxidation-resistant layer, the semiconductor island, and the oxidation-resistant material to an oxygen-containing ambient.
    Type: Application
    Filed: March 15, 2006
    Publication date: September 20, 2007
    Applicant: Freescale Semiconductor, Inc.
    Inventors: Mariam Sadaka, Bich-Yen Nguyen, Voon-Yew Thean
  • Publication number: 20070218654
    Abstract: A semiconductor process and apparatus provide a planarized hybrid substrate (16) by selectively depositing an epitaxial silicon layer (70) to fill a trench (96), and then blanket depositing silicon to cover the entire wafer with near uniform thickness of crystalline silicon (102) over the epi silicon layer (70) and polycrystalline silicon (101, 103) over the nitride mask layer (95). The polysilicon material (101, 103) added by the two-step process increases the polish rate of subsequent CMP polishing to provide a more uniform polish surface (100) over the entire wafer surface, regardless of variations in structure widths and device densities. By forming first gate electrodes (151) over a first SOI layer (90) using deposited (100) silicon and forming second gate electrodes (161) over an epitaxially grown (110) silicon layer (70), a high performance CMOS device is obtained which includes high-k metal PMOS gate electrodes (161) having improved hole mobility.
    Type: Application
    Filed: March 14, 2006
    Publication date: September 20, 2007
    Inventors: Gregory Spencer, Peter Beckage, Mariam Sadaka
  • Publication number: 20070210381
    Abstract: An electronic device can have an insulating layer lying between a first semiconductor layer and a base layer. A second semiconductor layer, having a different composition and stress as compared to the first semiconductor layer, can overlie at least a portion of the first semiconductor layer. In one embodiment, a first electronic component can include a first active region that includes a first portion of the first and the second semiconductor layers. A second electronic component can include a second active region that can include a second portion of the first semiconductor layer. Different processes can be used to form the electronic device. In another embodiment, annealing a workpiece can be performed and the stress of at least one of the semiconductor layers can be changed. In a different embodiment, annealing the workpiece can be performed either before or after the formation of the second semiconductor layer.
    Type: Application
    Filed: March 13, 2006
    Publication date: September 13, 2007
    Applicant: Freescale Semiconductor, Inc.
    Inventors: Mariam Sadaka, Venkat Kolagunta, William Taylor, Victor Vartanian
  • Publication number: 20070190745
    Abstract: A semiconductor device is formed having two physically separate regions with differing properties such as different surface orientation, crystal rotation, strain or composition. In one form a first layer having a first property is formed on an insulating layer. The first layer is isolated into first and second physically separate areas. After this physical separation, only the first area is amorphized. A donor wafer is placed in contact with the first and second areas. The semiconductor device is annealed to modify the first of the first and second separate areas to have a different property from the second of the first and second separate areas. The donor wafer is removed and at least one semiconductor structure is formed in each of the first and second physically separate areas. In another form, the separate regions are a bulk substrate and an electrically isolated region within the bulk substrate.
    Type: Application
    Filed: February 10, 2006
    Publication date: August 16, 2007
    Inventors: Mariam Sadaka, Bich-Yen Nguyen, Voon-Yew Thean, Ted White
  • Publication number: 20070187717
    Abstract: A semiconductor device and method of forming the same. The semiconductor device includes an epitaxially grown and conductive buffer layer having a contact covering a substantial portion of a bottom surface thereof and a lateral channel above the buffer layer. The semiconductor device also includes another contact above the lateral channel and an interconnect that connects the lateral channel to the buffer layer, operable to provide a low resistance coupling between the contact and the lateral channel.
    Type: Application
    Filed: April 3, 2007
    Publication date: August 16, 2007
    Inventors: Mariam Sadaka, Berinder Brar, Wonill Ha, Chanh Nguyen
  • Publication number: 20070145417
    Abstract: A semiconductor device having a lateral channel with contacts on opposing surfaces thereof. The semiconductor device includes a conductive substrate having a source contact covering a substantial portion of a bottom surface thereof. The semiconductor device also includes an isolation layer above the conductive substrate, a lateral channel above the isolation layer and a drain contact above the lateral channel. The semiconductor device further includes a gate located in a gate recess interposed between the lateral channel and the drain contact and a drain formed by at least one source/drain contact layer interposed between the lateral channel and the drain contact. The drain is offset on one side of the gate by a gate-to-drain separation distance. The semiconductor device still further includes an interconnect that connects the lateral channel to the conductive substrate operable to provide a low resistance coupling between the source contact and the lateral channel.
    Type: Application
    Filed: February 27, 2007
    Publication date: June 28, 2007
    Inventors: Berinder Brar, Wonill Ha, Mariam Sadaka, Chanh Nguyen
  • Publication number: 20070108481
    Abstract: An electronic device can include a first semiconductor portion and a second semiconductor portion, wherein the compositions of the first and second semiconductor portions are different from each other. In one embodiment, the first and second semiconductor portions can have different stresses compared to each other. In one embodiment, the electronic device may be formed by forming an oxidation mask over the first semiconductor portion. A second semiconductor layer can be formed over the second semiconductor portion of the first semiconductor layer and have a different composition compared to the first semiconductor layer. An oxidation can be performed, and a concentration of a semiconductor element (e.g., germanium) within the second portion of the first semiconductor layer can be increased. In another embodiment, a selective condensation may be performed, and a field isolation region can be formed between the first and second portions of the first semiconductor layer.
    Type: Application
    Filed: November 14, 2005
    Publication date: May 17, 2007
    Applicant: Freescale Semiconductor, Inc.
    Inventors: Voon-Yew Thean, Brian Goolsby, Linda McCormick, Bich-Yen Nguyen, Colita Parker, Mariam Sadaka, Victor Vartanian, Ted White, Melissa Zavala
  • Publication number: 20070099353
    Abstract: Forming a semiconductor structure includes providing a substrate having a strained semiconductor layer overlying an insulating layer, providing a first device region for forming a first plurality of devices having a first conductivity type, providing a second device region for forming a second plurality of devices having a second conductivity type, and thickening the strained semiconductor layer in the second device region so that the strained semiconductor layer in the second device region has less strain that the strained semiconductor layer in the first device region. Alternatively, forming a semiconductor structure includes providing a first region having a first conductivity type, forming an insulating layer overlying at least an active area of the first region, anisotropically etching the insulating layer, and after anisotropically etching the insulating layer, deposing a gate electrode material overlying at least a portion of the insulating layer.
    Type: Application
    Filed: October 31, 2005
    Publication date: May 3, 2007
    Inventors: Voon-Yew Thean, Jian Chen, Bich-Yen Nguyen, Mariam Sadaka, Da Zhang
  • Publication number: 20070099361
    Abstract: Forming a semiconductor structure includes providing a substrate having a strained semiconductor layer overlying an insulating layer, providing a first device region for forming a first plurality of devices having a first conductivity type, providing a second device region for forming a second plurality of devices having a second conductivity type, and thickening the strained semiconductor layer in the second device region so that the strained semiconductor layer in the second device region has less strain that the strained semiconductor layer in the first device region. Alternatively, forming a semiconductor structure includes providing a first region having a first conductivity type, forming an insulating layer overlying at least an active area of the first region, anisotropically etching the insulating layer, and after anisotropically etching the insulating layer, deposing a gate electrode material overlying at least a portion of the insulating layer.
    Type: Application
    Filed: October 31, 2005
    Publication date: May 3, 2007
    Inventors: Voon-Yew Thean, Jian Chen, Bich-Yen Nguyen, Mariam Sadaka, Da Zhang
  • Publication number: 20070082453
    Abstract: A semiconductor substrate having a silicon layer is provided. In one embodiment, the substrate is a silicon-on-insulator (SOI) substrate having an oxide layer underlying the silicon layer. An amorphous or polycrystalline silicon germanium layer is formed overlying the silicon layer. Alternatively, germanium is implanted into a top portion of the silicon layer to form an amorphous silicon germanium layer. The silicon germanium layer is then oxidized to convert the silicon germanium layer into a silicon dioxide layer and to convert at least a portion of the silicon layer into germanium-rich silicon. The silicon dioxide layer is then removed prior to forming transistors using the germanium-rich silicon. In one embodiment, the germanium-rich silicon is selectively formed using a patterned masking layer over the silicon layer and under the silicon germanium layer. Alternatively, isolation regions may be used to define local regions of the substrate in which the germanium-rich silicon is formed.
    Type: Application
    Filed: December 12, 2006
    Publication date: April 12, 2007
    Applicant: Freescale Semiconductor, Inc.
    Inventors: Marius Orlowski, Alexander Barr, Mariam Sadaka, Ted White
  • Publication number: 20070048919
    Abstract: A semiconductor process and apparatus includes forming first and second metal gate electrodes (151, 161) over a hybrid substrate (17) by forming the first gate electrode (151) over a first high-k gate dielectric (121) and forming the second gate electrode (161) over at least a second high-k gate dielectric (122) different from the first gate dielectric (121). By forming the first gate electrode (151) over a first SOI substrate (90) formed by depositing (100) silicon and forming the second gate electrode (161) over an epitaxially grown (110) SiGe substrate (70), a high performance CMOS device is obtained which includes high-k metal PMOS gate electrodes (161) having improved hole mobility.
    Type: Application
    Filed: August 23, 2005
    Publication date: March 1, 2007
    Inventors: Olubunmi Adetutu, Mariam Sadaka, Ted White, Bich-Yen Nguyen
  • Publication number: 20060292834
    Abstract: A method of forming a semiconductor structure having a hybrid crystal orientation and forming MOSFETs having improved performance on the semiconductor structure is provided. The method includes providing a substrate comprising a buried oxide (BOX) on a first semiconductor layer, and a second semiconductor layer on the BOX, wherein the first and second semiconductor layers have a first and a second crystal orientation, respectively, and wherein the substrate comprises a first region and a second region. An isolation structure is formed in the second region extending to the first semiconductor layer. A trench is then formed in the isolation structure, exposing the first semiconductor layer. A semiconductor material is epitaxially grown in the trench. The method further includes forming a MOSFET of a first type on the second semiconductor layer and a MOSFET of an opposite type than the first type on the epitaxially grown semiconductor material.
    Type: Application
    Filed: November 17, 2005
    Publication date: December 28, 2006
    Inventors: Chung-Te Lin, I-Lu Wu, Mariam Sadaka