Patents by Inventor Marius K. Orlowski

Marius K. Orlowski has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7575958
    Abstract: A programmable fuse and method of formation utilizing a layer of silicon germanium (SiGe) (e.g. monocrystalline) as a thermal insulator to contain heat generated during programming. The programmable fuse, in some examples, may be devoid of any dielectric materials between a conductive layer and a substrate. In one example, the conductive layer serves as programmable material, that in a low impedance state, electrically couples conductive structures. A programming current is applied to the programmable material to modify the programmable material to place the fuse in a high impedance state.
    Type: Grant
    Filed: October 11, 2005
    Date of Patent: August 18, 2009
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Alexander B. Hoefler, Marius K. Orlowski
  • Publication number: 20090166700
    Abstract: A semiconductor fabrication method includes forming a semiconductor structure including source/drain regions disposed on either side of a channel body wherein the source/drain regions include a first semiconductor material and wherein the channel body includes a migration barrier of a second semiconductor material. A gate dielectric overlies the semiconductor structure and a gate module overlies the gate dielectric. An offset in the majority carrier potential energy level between the first and second semiconductor materials creates a potential well for majority carriers in the channel body. The migration barrier may be a layer of the second semiconductor material over a first layer of the first semiconductor material and under a capping layer of the first semiconductor material. In a one dimensional migration barrier, the migration barrier extends laterally through the source/drain regions while, in a two dimensional barrier, the barrier terminates laterally at boundaries defined by the gate module.
    Type: Application
    Filed: March 5, 2009
    Publication date: July 2, 2009
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Marius K. ORLOWSKI, James D. BURNETT
  • Patent number: 7544576
    Abstract: A semiconductor fabrication method includes forming a gate module overlying a substrate. Recesses are etched in the substrate using the gate module as a mask. A barrier layer is deposited over the wafer and anisotropically etched to form barrier “curtains” on sidewalls of the source/drain recesses. A metal layer is deposited wherein the metal layer contacts a semiconductor within the recess. The wafer is annealed to form a silicide selectively. The diffusivity of the metal with respect to the barrier structure material is an order of magnitude less than the diffusivity of the metal with respect to the semiconductor material. The etched recesses may include re-entrant sidewalls. The metal layer may be a nickel layer and the barrier layer may be a titanium nitride layer. Silicon or silicon germanium epitaxial structures may be formed in the recesses overlying the semiconductor substrate.
    Type: Grant
    Filed: July 29, 2005
    Date of Patent: June 9, 2009
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Dharmesh Jawarani, Chun-Li Liu, Marius K. Orlowski
  • Publication number: 20090142934
    Abstract: A semiconductor device having upright dielectric nanotubes at an inter-layer dielectric level and method of manufacturing such a device is disclosed. The use of a catalyst is proposed in the disclosed manufacturing flow that facilitates growth of upright dielectric nanotubes having ultra low-k values that form all or part of the dielectric material for an ILD. In one embodiment, carbon nanotubes form interlayer conducting vias. In another embodiment dielectric material nanotubes form reinforcing pillars. The integration of catalysts is proposed to accommodate both upright dielectric and upright conducting nanotube fabrication in the same layer.
    Type: Application
    Filed: December 9, 2005
    Publication date: June 4, 2009
    Applicant: Freescale Semiconductor, Inc.
    Inventors: Peter L.G. Ventzek, Marius K. Orlowski
  • Patent number: 7535060
    Abstract: A semiconductor device includes a semiconductor structure having a first sidewall. A vertical channel region is formed in the semiconductor structure along the first sidewall between a first current electrode region and a second current electrode region. First and second charge storage structures are formed adjacent to the first sidewall in openings of a dielectric layer. The first and second charge storage structures are electrically isolated from each other and from the semiconductor structure. A control electrode is formed adjacent to the first sidewall. In another embodiment, third and fourth charge storage structures may be formed adjacent to a second sidewall of the semiconductor structure in openings of a dielectric layer.
    Type: Grant
    Filed: March 8, 2006
    Date of Patent: May 19, 2009
    Assignee: Freescale Semiconductor, Inc.
    Inventor: Marius K. Orlowski
  • Publication number: 20090115001
    Abstract: An embodiment of a semiconductor device includes a semiconductor substrate having a principal surface, spaced-apart source and drain regions separated by a channel region at the principal surface, and a multilayered gate structure located over the channel region. The multilayered gate structure includes a gate dielectric layer in contact with the channel region, a first conductor comprising a metal oxide overlying the gate dielectric layer, a second conductor overlying the first conductor, and an impurity migration inhibiting layer between the gate dielectric layer and the first conductor or between the first conductor and the second conductor.
    Type: Application
    Filed: December 31, 2008
    Publication date: May 7, 2009
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Chun-Li Liu, Marius K. Orlowski, Matthew W. Stoker
  • Patent number: 7517741
    Abstract: A semiconductor fabrication method includes forming a semiconductor structure including source/drain regions disposed on either side of a channel body wherein the source/drain regions include a first semiconductor material and wherein the channel body includes a migration barrier of a second semiconductor material. A gate dielectric overlies the semiconductor structure and a gate module overlies the gate dielectric. An offset in the majority carrier potential energy level between the first and second semiconductor materials creates a potential well for majority carriers in the channel body. The migration barrier may be a layer of the second semiconductor material over a first layer of the first semiconductor material and under a capping layer of the first semiconductor material. In a one dimensional migration barrier, the migration barrier extends laterally through the source/drain regions while, in a two dimensional barrier, the barrier terminates laterally at boundaries defined by the gate module.
    Type: Grant
    Filed: June 30, 2005
    Date of Patent: April 14, 2009
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Marius K. Orlowski, James D. Burnett
  • Patent number: 7510956
    Abstract: Methods and apparatus are provided for semiconductor devices. The apparatus comprises a substrate having therein a source region and a drain region separated by a channel region extending to a first surface of the substrate, and a multilayered gate structure located above the channel region. The gate structure comprises, a gate dielectric, preferably of an oxide of Hf, Zr or HfZr substantially in contact with the channel region, a first conductor layer of, for example an oxide of MoSi overlying the gate dielectric, a second conductor layer of, e.g., poly-Si, overlying the first conductor layer and adapted to apply an electrical field to the channel region, and an impurity migration inhibiting layer (e.g., MoSi) located above or below the first conductor layer and adapted to inhibit migration of a mobile impurity, such as oxygen for example, toward the substrate.
    Type: Grant
    Filed: January 30, 2006
    Date of Patent: March 31, 2009
    Assignee: Fressscale Semiconductor, Inc.
    Inventors: Chun-Li Liu, Marius K. Orlowski, Matthew W. Stoker
  • Patent number: 7456055
    Abstract: An electronic device can include a base layer, a semiconductor layer, and a first semiconductor fin spaced apart from and overlying a semiconductor layer. In a particular embodiment, a second semiconductor fin can include a portion of the semiconductor layer. In another aspect, a process of forming an electronic device can include providing a workpiece that includes a base layer, a first semiconductor layer that overlies and is spaced apart from a base layer, a second semiconductor layer that overlies, and an insulating layer lying between the first semiconductor layer and the second semiconductor layer. The process can also include removing a portion of the second semiconductor layer to form a first semiconductor fin, and forming a conductive member overlying the first semiconductor fin.
    Type: Grant
    Filed: March 15, 2006
    Date of Patent: November 25, 2008
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Marius K. Orlowski, Suresh Venkatesan
  • Patent number: 7442621
    Abstract: A semiconductor fabrication process includes patterning a hard mask over a semiconductor substrate to expose an isolation region and forming a trench in the isolation region. A flowable dielectric is deposited in the trench to partially fill the trench and a capping dielectric is deposited overlying the first oxide to fill the trench. The substrate may be a silicon on insulator (SOI) substrate including a buried oxide (BOX) layer and the trench may extend partially into the BOX layer. The flowable dielectric may be a spin deposited flowable oxide or a CVD BPSG oxide. The flowable dielectric isolation structure provides a buffer that prevents stress induced on one side of the isolation structure from creating stress on the other side of the structure. Thus, for example, compressive stress created by forming silicon germanium on silicon in PMOS regions does not create compressive stress in NMOS regions.
    Type: Grant
    Filed: November 22, 2004
    Date of Patent: October 28, 2008
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Marius K. Orlowski, Mark C. Foisy, Olubunmi O. Adetutu
  • Patent number: 7442590
    Abstract: A method for forming a semiconductor device includes providing a semiconductor layer, forming a passivation layer over the semiconductor layer, wherein the passivation layer has an opening having sidewalls, forming a fin over the semiconductor layer, wherein after forming the passivation layer the fin is within the opening, and forming a portion of a gate within the opening. In one embodiment, a dummy gate is used. In one embodiment, spacers are formed within the opening of the passivation layer. The structure is also discussed.
    Type: Grant
    Filed: April 27, 2006
    Date of Patent: October 28, 2008
    Assignee: Freescale Semiconductor, Inc
    Inventor: Marius K. Orlowski
  • Patent number: 7435639
    Abstract: A semiconductor process and apparatus provide a planarized hybrid substrate (18) by exposing a buried oxide layer (80) in a first area (99), selectively etching the buried oxide layer (80) to expose a first semiconductor layer (70) in a second smaller seed area (98), and then epitaxially growing a first epitaxial semiconductor material from the seed area (98) of the first semiconductor layer (70) that fills the second trench opening (100) and grows laterally over the exposed insulator layer (80) to fill at least part of the first trench opening (99), thereby forming a first epitaxial semiconductor layer (101) that is electrically isolated from the second semiconductor layer (90). By forming a first SOI transistor device (160) over a first SOI layer (90) using deposited (100) silicon and forming first SOI transistor (161) over an epitaxially grown (110) silicon layer (101), a high performance CMOS device is obtained.
    Type: Grant
    Filed: May 31, 2006
    Date of Patent: October 14, 2008
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Brian A. Winstead, Omar Zia, Mariam G. Sadaka, Marius K. Orlowski
  • Publication number: 20080211102
    Abstract: A semiconductor device has lateral conductors or traces that are formed of nanotubes such as carbon. A sacrificial layer is formed overlying the substrate. A dielectric layer is formed overlying the sacrificial layer. A lateral opening is formed by removing a portion of the dielectric layer and the sacrificial layer which is located between two columns of metallic catalysts. The lateral opening includes a neck portion and a cavity portion which is used as a constrained space to grow a nanotube. A plasma is used to apply electric charge that forms an electric field which controls the direction of formation of the nanotubes. Nanotubes from each column of metallic catalyst are laterally grown and either abut or merge into one nanotube. Contact to the nanotube may be made from either the neck portion or the columns of metallic catalysts.
    Type: Application
    Filed: April 8, 2008
    Publication date: September 4, 2008
    Applicant: Freescale Semiconductor Inc.
    Inventors: Marius K. Orlowski, Shahid Rauf, Peter L.G. Ventzek
  • Publication number: 20080182428
    Abstract: An electronic device can include a layer of discontinuous storage elements. A dielectric layer overlying the discontinuous storage elements can be substantially hydrogen-free. A process of forming the electronic device can include forming a layer including silicon over the discontinuous storage elements. In one embodiment, the process includes oxidizing at least substantially all of the layer. In another embodiment, the process includes forming the layer using a substantially hydrogen-free silicon precursor material and oxidizing at least substantially all of the layer.
    Type: Application
    Filed: January 26, 2007
    Publication date: July 31, 2008
    Applicant: Freescale Semiconductor, Inc.
    Inventors: Tushar P. Merchant, Chun-Li Liu, Ramachandran Muralidhar, Marius K. Orlowski, Rajesh A. Rao, Matthew Stoker
  • Patent number: 7402476
    Abstract: An electronic device is formed by forming a first and second layer overlying a plurality of transistor locations. An etch is performed to remove portions of the first and second layers to expose a portion of the plurality of transistor locations, while other portions of the first and second layer remain to protect other transistor locations. Subsequently, source/drain locations of the exposed transistor locations are etched along with the remaining portion of the second layer. The etch is substantially terminated by removing the portion of the second layer using an end-point detection technique involving the first layer. Subsequently an epitaxial layer is formed in the source/drain recesses to provide stress on a channel region of the transistor locations.
    Type: Grant
    Filed: June 15, 2005
    Date of Patent: July 22, 2008
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Marius K. Orlowski, Brian J. Goolsby
  • Patent number: 7371677
    Abstract: A semiconductor device has lateral conductors or traces that are formed of nanotubes such as carbon. A sacrificial layer is formed overlying the substrate. A dielectric layer is formed overlying the sacrificial layer. A lateral opening is formed by removing a portion of the dielectric layer and the sacrificial layer which is located between two columns of metallic catalysts. The lateral opening includes a neck portion and a cavity portion which is used as a constrained space to grow a nanotube. A plasma is used to apply electric charge that forms an electric field which controls the direction of formation of the nanotubes. Nanotubes from each column of metallic catalyst are laterally grown and either abut or merge into one nanotube. Contact to the nanotube may be made from either the neck portion or the columns of metallic catalysts.
    Type: Grant
    Filed: September 30, 2005
    Date of Patent: May 13, 2008
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Marius K. Orlowski, Shahid Rauf, Peter L. G. Ventzek
  • Patent number: 7364970
    Abstract: A multi-bit non volatile memory cell includes a first floating gate sidewall spacer structure and a second floating gate sidewall spacer structure physically separated from the first floating gate sidewall spacer structure. Each floating gate sidewall spacer structure stores charge for logically storing a bit. The floating gate sidewall spacer structures are formed adjacent to a patterned structure by sidewall spacer formation processes from a layer of floating gate material (e.g. polysilicon). A control gate is formed over the floating gate sidewall spacer structures by forming a layer of control gate material and then patterning the layer of control gate material.
    Type: Grant
    Filed: September 30, 2005
    Date of Patent: April 29, 2008
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Marius K. Orlowski, Sinan Goktepeli
  • Patent number: 7354831
    Abstract: A method of forming an electronic device includes, forming a first channel coupled to a first current electrode and a second current electrode and forming a second channel coupled to the first current electrode and the second current electrode. The method also includes the second channel being substantially parallel to the first channel within a first plane, wherein the first plane is parallel to a major surface of a substrate over which the first channel lies. A gate electrode is formed surrounding the first channel and the second channel in a second plane, wherein the second plane is perpendicular to the major surface of the substrate. The resulting semiconductor device has a plurality of locations with a plurality of channels at each location. At small dimensions the channels form quantum wires connecting the source and drain.
    Type: Grant
    Filed: August 8, 2005
    Date of Patent: April 8, 2008
    Assignee: Freescale Semiconductor, Inc.
    Inventor: Marius K. Orlowski
  • Patent number: 7354814
    Abstract: A semiconductor fabrication process includes forming a recess in a semiconductor substrate. A silicon germanium film is formed on a sidewall of the recess. A gate dielectric and gate electrode are formed adjacent the silicon germanium film. Source/drain regions are then formed wherein a first source/drain region is adjacent a first side of the gate electrode in an upper surface of the substrate and a second source/drain region adjacent a second side of the gate electrode is below a lower surface of the recess. Etching the exposed portion of the substrate may be done so as to form a rounded corner at the junction of the recess sidewall and the recess lower surface. The silicon germanium film formation is preferably epitaxial. An epitaxial silicon film may be formed adjacent the silicon germanium film.
    Type: Grant
    Filed: September 23, 2004
    Date of Patent: April 8, 2008
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Marius K. Orlowski, Bich-Yen Nguyen
  • Patent number: 7339241
    Abstract: A FinFET, which by its nature has both elevated source/drains and an elevated channel that are portions of an elevated semiconductor portion that has parallel fins and one source/drain on one side of the fins and another source/drain on the other side of the fins, has all of the source/drain contacts away from the fins as much as reasonably possible. The gate contacts extend upward from the top surface of the elevated semiconductor portion. The gate also extends upward from the top surface of the elevated semiconductor portion. The contacts are located between the fins where the gate is below the height of the elevated semiconductor portion so the contacts are as far as reasonably possible from the gate, thereby reducing gate to drain capacitance and providing additional assistance to alignment tolerance.
    Type: Grant
    Filed: August 31, 2005
    Date of Patent: March 4, 2008
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Marius K. Orlowski, Tab A. Stephens