Patents by Inventor Marius K. Orlowski

Marius K. Orlowski has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7045432
    Abstract: A semiconductor on insulator transistor is formed beginning with a bulk silicon substrate. An active region is defined in the substrate and an oxygen-rich silicon layer that is monocrystalline is formed on a top surface of the active region. On this oxygen-rich silicon layer is grown an epitaxial layer of silicon. After formation of the epitaxial layer of silicon, the oxygen-rich silicon layer is converted to silicon oxide while at least a portion of the epitaxial layer of silicon remains as monocrystalline silicon. This is achieved by applying high temperature water vapor to the epitaxial layer. The result is a silicon on insulator structure useful for making a transistor in which the gate dielectric is on the remaining monocrystalline silicon, the gate is on the gate dielectric, and the channel is in the remaining monocrystalline silicon under the gate.
    Type: Grant
    Filed: February 4, 2004
    Date of Patent: May 16, 2006
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Marius K. Orlowski, Olubunmi O. Adetutu, Alexander L. Barr
  • Patent number: 7037795
    Abstract: A semiconductor fabrication process includes forming a transistor gate overlying an SOI wafer having a semiconductor top layer over a buried oxide layer (BOX) over a semiconductor substrate. Source/drain trenches, disposed on either side of the gate, are etched into the BOX layer. Source/drain structures are formed within the trenches. A depth of the source/drain structures is greater than the thickness of the top silicon layer and an upper surface of the source/drain structures coincides approximately with the transistor channel whereby vertical overlap between the source/drain structures and the gate is negligible. The trenches preferably extend through the BOX layer to expose a portion of the silicon substrate. The source/drain structures are preferably formed epitaxially and possibly in two stages including an oxygen rich stage and an oxygen free stage. A thermally anneal between the two epitaxial stages will form an isolation dielectric between the source/drain structure and the substrate.
    Type: Grant
    Filed: October 15, 2004
    Date of Patent: May 2, 2006
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Alexander L. Barr, Olubunmi O. Adetutu, Bich-Yen Nguyen, Marius K. Orlowski, Mariam G. Sadaka, Voon-Yew Thean, Ted R. White
  • Patent number: 7029980
    Abstract: A vacancy injecting process for injecting vacancies in template layer material of an SOI substrate. The template layer material has a crystalline structure that includes, in some embodiments, both germanium and silicon atoms. A strained silicon layer is then epitaxially grown on the template layer material with the beneficial effects that straining has on electron and hole mobility. The vacancy injecting process is performed to inject vacancies and germanium atoms into the crystalline structure wherein germanium atoms recombine with the vacancies. One embodiment, a nitridation process is performed to grow a nitride layer on the template layer material and consume silicon in a way that injects vacancies in the crystalline structure while also allowing germanium atoms to recombine with the vacancies.
    Type: Grant
    Filed: September 25, 2003
    Date of Patent: April 18, 2006
    Assignee: Freescale Semiconductor Inc.
    Inventors: Chun-Li Liu, Marius K. Orlowski, Matthew W. Stoker, Philip J. Tobin, Mariam G. Sadaka, Alexander L. Barr, Bich-Yen Nguyen, Voon-Yew Thean, Shawn G. Thomas, Ted R. White
  • Patent number: 6964911
    Abstract: A method for forming a semiconductor device having isolation structures decreases leakage current. A channel isolation structure decreases leakage current through a channel structure. In addition, current electrode dielectric insulation structures are formed under current electrode regions to prevent leakage between the current electrodes.
    Type: Grant
    Filed: September 23, 2003
    Date of Patent: November 15, 2005
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Marius K. Orlowski, Alexander L. Barr
  • Patent number: 6921700
    Abstract: A transistor (10) overlies a substrate (12) and has a plurality of overlying channels (72, 74, 76) that are formed in a stacked arrangement. A continuous gate (60) material surrounds each of the channels. Each of the channels is coupled to source and drain electrodes (S/D) to provide increased channel surface area in a same area that a single channel structure is conventionally implemented. A vertical channel dimension between two regions of the gate (60) are controlled by a growth process as opposed to lithographical or spacer formation techniques. The gate is adjacent all sides of the multiple overlying channels. Each channel is formed by growth from a common seed layer and the source and drain electrodes and the channels are formed of a substantially homogenous crystal lattice.
    Type: Grant
    Filed: July 31, 2003
    Date of Patent: July 26, 2005
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Marius K. Orlowski, Leo Mathew
  • Patent number: 6831350
    Abstract: A semiconductor structure includes a substrate comprising a first relaxed semiconductor material with a first lattice constant. A semiconductor device layer overlies the substrate, wherein the semiconductor device layer includes a second relaxed semiconductor material with a second lattice constant different from the first lattice constant. In addition, a dielectric layer is interposed between the substrate and the semiconductor device layer, wherein the dielectric layer includes a programmed transition zone disposed within the dielectric layer for transitioning between the first lattice constant and the second lattice constant. The programmed transition zone includes a plurality of layers, adjoining ones of the plurality of layers having different lattice constants with one of the adjoining ones having a first thickness exceeding a first critical thickness required to form defects and another of the adjoining ones having a second thickness not exceeding a second critical thickness.
    Type: Grant
    Filed: October 2, 2003
    Date of Patent: December 14, 2004
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Chun-Li Liu, Alexander L. Barr, John M. Grant, Bich-Yen Nguyen, Marius K. Orlowski, Tab A. Stephens, Ted R. White, Shawn G. Thomas
  • Patent number: 5985736
    Abstract: Field isolation regions are formed using oxidation-resistant spacers or plugs that completely fill trenches within a semiconductor substrate prior to forming the field isolation regions. The spacers or plugs help to reduce encroachment of the field isolation regions under the spacers or plugs. The structure used as an oxidation mask for the field isolation process may include a silicon-containing member that is thicker than an overlying oxidation-resistant member. The thicker silicon-containing member may be capable of tolerating higher stress before defects in an underlying pad layer or substrate are formed.
    Type: Grant
    Filed: October 14, 1997
    Date of Patent: November 16, 1999
    Assignee: Motorola, Inc.
    Inventors: Marius K. Orlowski, Karl Wimmer
  • Patent number: 5741736
    Abstract: A semiconductor device (83)including a transistor (85) with a nonuniformly doped channel region can be formed with a relatively simple process without having to use high dose implants or additional heat cycles. In one embodiment, a polysilicon layer (14) and silicon nitride layer (16) are patterned at the minimum resolution limit. The polysilicon layer is then isotropically etched to form a winged gate structure (32). A selective channel implant step is performed where ions are implanted through at least one of the nitride wings of the winged gate structure (32) but are not implanted through the polysilicon layer (14). Another polysilicon layer (64)is conformally deposited and etched such that the polysilicon (74) does not extend beyond the edges of the nitride wings.
    Type: Grant
    Filed: May 13, 1996
    Date of Patent: April 21, 1998
    Assignee: Motorola Inc.
    Inventors: Marius K. Orlowski, Frank Kelsey Baker, Jr.
  • Patent number: 5705415
    Abstract: A semiconductor device is formed having a floating gate memory cell (11) that has its channel region (33) oriented vertically with a portion of the channel region (33) that is not capacitively coupled to a floating gate (32). The memory cell (11) is less likely to be over-erased and may be programmed by source-side injection. The cell (11) may not need to be repaired after erasing. Less power may be consumed during programming compared to hot electron injection and Fowler-Nordheim tunneling.
    Type: Grant
    Filed: October 4, 1994
    Date of Patent: January 6, 1998
    Assignee: Motorola, Inc.
    Inventors: Marius K. Orlowski, Ko-Min Chang
  • Patent number: 5432118
    Abstract: Field isolation regions are formed using oxidation-resistant spacers or plugs that completely fill trenches within a semiconductor substrate prior to forming the field isolation regions. The spacers or plugs help to reduce encroachment of the field isolation regions under the spacers or plugs. The structure used as an oxidation mask for the field isolation process may include a silicon-containing member that is thicker than an overlying oxidation-resistant member. The thicker silicon-containing member may be capable of tolerating higher stress before defects in an underlying pad layer or substrate are formed.
    Type: Grant
    Filed: June 28, 1994
    Date of Patent: July 11, 1995
    Assignee: Motorola, Inc.
    Inventors: Marius K. Orlowski, Karl Wimmer
  • Patent number: 5314834
    Abstract: A field effect transistor, FET, (11) having a gate dielectric of varying thickness (14, 24) to improve device performance. The FET (11) is made on a substrate (10) and has a control electrode, or gate (16), and two current electrodes, or source and drain regions (28), which are separated by a channel region. The gate (16) is separated from the channel region by a gate dielectric. The gate dielectric has a centrally located first region that is of a first thickness (14) and a second region which is adjacent a perimeter of the first region that is of a second thickness (24). The second thickness (24) is made greater than the first thickness (14).
    Type: Grant
    Filed: August 26, 1991
    Date of Patent: May 24, 1994
    Assignee: Motorola, Inc.
    Inventors: Carlos A. Mazure, Marius K. Orlowski