Patents by Inventor Mark A. Fischer

Mark A. Fischer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6406977
    Abstract: In one aspect, the invention includes an isolation region forming method comprising: a) forming an oxide layer over a substrate; b) forming a nitride layer over the oxide layer, the nitride layer and oxide layer having a pattern of openings extending therethrough to expose portions of the underlying substrate; c) etching the exposed portions of the underlying substrate to form openings extending into the substrate; d) after etching the exposed portions of the underlying substrate, removing portions of the nitride layer while leaving some of the nitride layer remaining over the substrate; and e) after removing portions of the nitride layer, forming oxide within the openings in the substrate, the oxide within the openings forming at least portions of isolation regions.
    Type: Grant
    Filed: March 7, 2000
    Date of Patent: June 18, 2002
    Assignee: Micron Technology, Inc.
    Inventors: David L. Dickerson, Richard H. Lane, Charles H. Dennison, Kunal R. Parekh, Mark Fischer, John K. Zahurak
  • Publication number: 20020070422
    Abstract: In one aspect, the invention includes an isolation region forming method comprising: a) forming an oxide layer over a substrate; b) forming a nitride layer over the oxide layer, the nitride layer and oxide layer having a pattern of openings extending therethrough to expose portions of the underlying substrate; c) etching the exposed portions of the underlying substrate to form openings extending into the substrate; d) after etching the exposed portions of the underlying substrate, removing portions of the nitride layer while leaving some of the nitride layer remaining over the substrate; and e) after removing portions of the nitride layer, forming oxide within the openings in the substrate, the oxide within the openings forming at least portions of isolation regions.
    Type: Application
    Filed: February 14, 2002
    Publication date: June 13, 2002
    Inventors: David L. Dickerson, Richard H. Lane, Charles H. Dennison, Kunal R. Parekh, Mark Fischer, John K. Zahurak
  • Publication number: 20020047202
    Abstract: In one aspect, the invention includes a semiconductor processing method, comprising: a) providing a silicon nitride material having a surface; b) forming a barrier layer over the surface of the material, the barrier layer comprising silicon and nitrogen; and c) forming a photoresist over and against the barrier layer.
    Type: Application
    Filed: November 26, 2001
    Publication date: April 25, 2002
    Inventors: John T. Moore, Scott Jeffrey DeBoer, Mark Fischer, J. Brett Rolfson, Annette L. Martin, Ardavan Niroomand
  • Patent number: 6376358
    Abstract: A process for fabricating system-on-chip devices which contain embedded DRAM along with other components such as SRAM or logic circuits is disclosed. Local interconnects, via salicides and tungsten are formed subsequent to polysilicon plugs required for the operation of the DRAM and SRAM or logic. Also disclosed are systems-on-chips MIM/MIS capacitive devices produced by the inventive process.
    Type: Grant
    Filed: March 15, 2001
    Date of Patent: April 23, 2002
    Assignee: Micron Technology, Inc.
    Inventors: Mark Fischer, Jigish D. Trivedi, Charles H. Dennison, Todd R. Abbott, Raymond A. Turi
  • Patent number: 6372601
    Abstract: In one aspect, the invention includes an isolation region forming method comprising: a) forming an oxide layer over a substrate; b) forming a nitride layer over the oxide layer, the nitride layer and oxide layer having a pattern of openings extending therethrough to expose portions of the underlying substrate; c) etching the exposed portions of the underlying substrate to form openings extending into the substrate; d) after etching the exposed portions of the underlying substrate, removing portions of the nitride layer while leaving some of the nitride layer remaining over the substrate; and e) after removing portions of the nitride layer, forming oxide within the openings in the substrate, the oxide within the openings forming at least portions of isolation regions.
    Type: Grant
    Filed: September 3, 1998
    Date of Patent: April 16, 2002
    Assignee: Micron Technology, Inc.
    Inventors: David L. Dickerson, Richard H. Lane, Charles H. Dennison, Kunal R. Parekh, Mark Fischer, John K. Zahurak
  • Publication number: 20020001897
    Abstract: In one aspect, the invention includes a method of forming a gated semiconductor assembly, comprising: a) forming a silicon nitride layer over and against a floating gate; and b) forming a control gate over the silicon nitride layer. In another aspect, the invention includes a method of forming a gated semiconductor assembly, comprising: a) forming a floating gate layer over a substrate; b) forming a silicon nitride layer over the floating gate layer, the silicon nitride layer comprising a first portion and a second portion elevationally displaced from the first portion, the first portion having a greater stoichiometric amount of silicon than the second portion; and c) forming a control gate over the silicon nitride layer.
    Type: Application
    Filed: April 7, 1998
    Publication date: January 3, 2002
    Inventors: MARK A. HELM, MARK FISCHER, JOHN T. MOORE, SCOTT JEFFREY DEBOER
  • Patent number: 6329267
    Abstract: In one aspect, the invention includes an isolation region forming method comprising: a) forming an oxide layer over a substrate; b) forming a nitride layer over the oxide layer, the nitride layer and oxide layer having a pattern of openings extending therethrough to expose portions of the underlying substrate; c) etching the exposed portions of the underlying substrate to form openings extending into the substrate; d) after etching the exposed portions of the underlying substrate, removing portions of the nitride layer while leaving some of the nitride layer remaining over the substrate; and e) after removing portions of the nitride layer, forming oxide within the openings in the substrate, the oxide within the openings forming at least portions of isolation regions.
    Type: Grant
    Filed: March 7, 2000
    Date of Patent: December 11, 2001
    Assignee: Micron Technology, Inc.
    Inventors: David L. Dickerson, Richard H. Lane, Charles H. Dennison, Kunal R. Parekh, Mark Fischer, John K. Zahurak
  • Patent number: 6326321
    Abstract: In one aspect, the invention includes a semiconductor fabrication process, comprising: a) providing a substrate; b) forming a layer of silicon nitride over the substrate, the layer having a thickness; and c) enriching a portion of the thickness of the silicon nitride layer with silicon, the portion comprising less than or equal to about 95% of the thickness of the layer of silicon nitride. In another aspect, the invention includes a semiconductor fabrication process, comprising: a) providing a substrate; b) forming a layer of silicon nitride over the substrate, the layer having a thickness; and c) increasing a refractive index of a first portion of the thickness of the silicon nitride layer relative to a refractive index of a second portion of the silicon nitride layer, the first portion comprising less than or equal to about 95% of the thickness of the silicon nitride layer.
    Type: Grant
    Filed: June 27, 2000
    Date of Patent: December 4, 2001
    Assignee: Micron Technology, Inc.
    Inventors: Scott Jeffrey DeBoer, John T. Moore, Mark Fischer, Randhir P. S. Thakur
  • Publication number: 20010046772
    Abstract: Semiconductor processing methods of forming conductive projections and methods of increasing alignment tolerances are described. In one implementation, a conductive projection is formed over a substrate surface area and includes an upper surface and a side surface joined therewith to define a corner region. The corner region of the conductive projection is subsequently beveled to increase an alignment tolerance relative thereto. In another implementation, a conductive plug is formed over a substrate node location between a pair of conductive lines and has an uppermost surface. Material of the conductive plug is unevenly removed to define a second uppermost surface, at least a portion of which is disposed elevationally higher than a conductive line. In one aspect, conductive plug material can be removed by facet etching the conductive plug.
    Type: Application
    Filed: July 18, 2001
    Publication date: November 29, 2001
    Inventors: Mark Fischer, John K. Zahurak
  • Patent number: 6323139
    Abstract: In one aspect, the invention includes a semiconductor processing method, comprising: a) providing a silicon nitride material having a surface; b) forming a barrier layer over the surface of the material, the barrier layer comprising silicon and nitrogen; and c) forming a photoresist over and against the barrier layer.
    Type: Grant
    Filed: December 7, 1999
    Date of Patent: November 27, 2001
    Assignee: Micron Technology, Inc.
    Inventors: John T. Moore, Scott Jeffrey DeBoer, Mark Fischer, J. Brett Rolfson, Annette L. Martin, Ardavan Niroomand
  • Publication number: 20010044218
    Abstract: In one aspect, the invention includes a semiconductor processing method, comprising: a) providing a silicon nitride material having a surface; b) forming a barrier layer over the surface of the material, the barrier layer comprising silicon and nitrogen; and c) forming a photoresist over and against the barrier layer.
    Type: Application
    Filed: December 7, 1999
    Publication date: November 22, 2001
    Inventors: JOHN T. MOORE, SCOTT JEFFREY DEBOER, MARK FISCHER, J. BRETT ROLFSON, ANNETTE L. MARTIN, ARDAVAN NIROOMAND
  • Publication number: 20010042884
    Abstract: In one aspect, the invention includes a method of forming a gated semiconductor assembly, comprising: a) forming a silicon nitride layer over and against a floating gate; and b) forming a control gate over the silicon nitride layer. In another aspect, the invention includes a method of forming a gated semiconductor assembly, comprising: a) forming a floating gate layer over a substrate; b) forming a silicon nitride layer over the floating gate layer, the silicon nitride layer comprising a first portion and a second portion elevationally displaced from the first portion, the first portion having a greater stoichiometric amount of silicon than the second portion; and c) forming a control gate over the silicon nitride layer.
    Type: Application
    Filed: November 10, 1999
    Publication date: November 22, 2001
    Inventors: MARK A. HELM, MARK FISCHER, JOHN T. MOORE, SCOTT JEFFREY DEBOER
  • Patent number: 6316372
    Abstract: In one aspect, the invention includes a semiconductor fabrication process, comprising: a) providing a substrate; b) forming a layer of silicon nitride over the substrate, the layer having a thickness; and c) enriching a portion of the thickness of the silicon nitride layer with silicon, the portion comprising less than or equal to about 95% of the thickness of the layer of silicon nitride. In another aspect, the invention includes a semiconductor fabrication process, comprising: a) providing a substrate; b) forming a layer of silicon nitride over the substrate, the layer having a thickness; and c) increasing a refractive index of a first portion of the thickness of the silicon nitride layer relative to a refractive index of a second portion of the silicon nitride layer, the first portion comprising less than or equal to about 95% of the thickness of the silicon nitride layer.
    Type: Grant
    Filed: April 7, 1998
    Date of Patent: November 13, 2001
    Assignee: Micron Technology, Inc.
    Inventors: Scott Jeffrey DeBoer, John T. Moore, Randhir P. S. Thakur, Mark Fischer
  • Patent number: 6309973
    Abstract: Semiconductor processing methods of forming conductive projections and methods of increasing alignment tolerances are described. In one implementation, a conductive projection is formed over a substrate surface area and includes an upper surface and a side surface joined therewith to define a corner region. The corner region of the conductive projection is subsequently beveled to increase an alignment tolerance relative thereto. In another implementation, a conductive plug is formed over a substrate node location between a pair of conductive lines and has an uppermost surface. Material of the conductive plug is unevenly removed to define a second uppermost surface, at least a, portion of which is disposed elevationally higher than a conductive line. In one aspect, conductive plug material can be removed by facet etching the conductive plug.
    Type: Grant
    Filed: February 18, 2000
    Date of Patent: October 30, 2001
    Assignee: Micron Technology, Inc.
    Inventors: Mark Fischer, John K. Zahurak, Thomas M. Graettinger, Kunal Parekh
  • Patent number: 6300671
    Abstract: In one aspect, the invention includes a semiconductor processing method, comprising: a) providing a silicon nitride material having a surface; b) forming a barrier layer over the surface of the material, the barrier layer comprising silicon and nitrogen; and c) forming a photoresist over and against the barrier layer.
    Type: Grant
    Filed: August 18, 1999
    Date of Patent: October 9, 2001
    Assignee: Micron Technology, Inc.
    Inventors: John T. Moore, Scott J. DeBoer, Mark Fischer
  • Patent number: 6300253
    Abstract: In one aspect, the invention includes a semiconductor processing method, comprising: a) providing a silicon nitride material having a surface; b) forming a barrier layer over the surface of the material, the barrier layer comprising silicon and nitrogen; and c) forming a photoresist over and against the barrier layer.
    Type: Grant
    Filed: April 7, 1998
    Date of Patent: October 9, 2001
    Assignee: Micron Technology, Inc.
    Inventors: John T. Moore, Scott J. DeBoer, Mark Fischer
  • Publication number: 20010023948
    Abstract: A double blanket ion implant method for forming diffusion regions in memory array devices, such as a MOSFET access device is disclosed. The method provides a semiconductor substrate with a gate structure formed on its surface Next, a first pair of diffusion regions are formed in a region adjacent to the channel region by a first blanket ion implantation process. The first blanket ion implantation process has a first energy level and dose. The device is subjected to oxidizing conditions, which form oxidized sidewalls on the gate structure. A second blanket ion implantation process is conducted at the same location as the first ion implantation process adding additional dopant to the diffusion regions. The second blanket ion implantation process has a second energy level and dose. The resultant diffusion regions provide the device with improved static refresh performance over prior art devices.
    Type: Application
    Filed: April 2, 2001
    Publication date: September 27, 2001
    Inventors: Mark Fischer, Charles H. Dennison, Fawad Ahmed, Richard H. Lane, John K. Zahurak, Kunal R. Parekh
  • Publication number: 20010012676
    Abstract: In one aspect, the invention includes an isolation region forming method comprising: a) forming an oxide layer over a substrate; b) forming a nitride layer over the oxide layer, the nitride layer and oxide layer having a pattern of openings extending therethrough to expose portions of the underlying substrate; c) etching the exposed portions of the underlying substrate to form openings extending into the substrate; d) after etching the exposed portions of the underlying substrate, removing portions of the nitride layer while leaving some of the nitride layer remaining over the substrate; and e) after removing portions of the nitride layer, forming oxide within the openings in the substrate, the oxide within the openings forming at least portions of isolation regions.
    Type: Application
    Filed: March 7, 2000
    Publication date: August 9, 2001
    Inventors: David L Dickerson, Richard H Lane, Charles H Dennison, Kunal R Parekh, Mark Fischer, John K Zahurak
  • Publication number: 20010009798
    Abstract: In one aspect, the invention includes an isolation region forming method comprising: a) forming an oxide layer over a substrate; b) forming a nitride layer over the oxide layer, the nitride layer and oxide layer having a pattern of openings extending therethrough to expose portions of the underlying substrate; c) etching the exposed portions of the underlying substrate to form openings extending into the substrate; d) after etching the exposed portions of the underlying substrate, removing portions of the nitride layer while leaving some of the nitride layer remaining over the substrate; and e) after removing portions of the nitride layer, forming oxide within the openings in the substrate, the oxide within the openings forming at least portions of isolation regions.
    Type: Application
    Filed: February 9, 2001
    Publication date: July 26, 2001
    Inventors: David L. Dickerson, Richard H. Lane, Charles H. Dennison, Kunal R. Parekh, Mark Fischer
  • Patent number: 6238999
    Abstract: In one aspect, the invention includes an isolation region forming method comprising: a) forming an oxide layer over a substrate; b) forming a nitride layer over the oxide layer, the nitride layer and oxide layer having a pattern of openings extending therethrough to expose portions of the underlying substrate; c) etching the exposed portions of the underlying substrate to form openings extending into the substrate; d) after etching the exposed portions of the underlying substrate, removing portions of the nitride layer while leaving some of the nitride layer remaining over the substrate; and e) after removing portions of the nitride layer, forming oxide within the openings in the substrate, the oxide within the openings forming at least portions of isolation regions.
    Type: Grant
    Filed: March 7, 2000
    Date of Patent: May 29, 2001
    Assignee: Micron Technology
    Inventors: David L. Dickerson, Richard H. Lane, Charles H. Dennison, Kunal R. Parekh, Mark Fischer, John K. Zahurak