Patents by Inventor Mark A. Fischer

Mark A. Fischer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7186608
    Abstract: A method for fabricating improved integrated circuit devices. The method enables selective hardening of gate oxide layers and includes providing a semiconductor substrate having a gate oxide layer formed thereover. A resist is then formed over the gate oxide layer and patterned to expose one or more areas of the gate oxide layer which are to be hardened. The exposed portions of the gate oxide layer are then hardened using a true remote plasma nitridation (RPN) scheme or a high-density plasma (HDP) RPN scheme. Because the RPN scheme used in the method of the present invention runs at low temperature, the patterned resist remains stable through the RPN process, and those areas of gate oxide layer which are exposed by the patterned resist are selectively hardened by the RPN treatment, while those areas covered by the patterned resist remain unaffected.
    Type: Grant
    Filed: March 2, 2004
    Date of Patent: March 6, 2007
    Assignee: Micron Technology, Inc.
    Inventors: John T. Moore, Mark Fischer
  • Publication number: 20070010084
    Abstract: The invention includes methods of forming electrically conductive material between line constructions associated with a peripheral region or a pitch region of a semiconductor substrate. The electrically conductive material can be incorporated into an electrically-grounded shield, and/or can be configured to create a magnetic field bias. Also, the conductive material can have electrically isolated segments that are utilized as electrical jumpers for connecting circuit elements. The invention also includes semiconductor constructions comprising the electrically conductive material between line constructions associated with one or both of the pitch region and the peripheral region.
    Type: Application
    Filed: July 5, 2005
    Publication date: January 11, 2007
    Inventors: Mark Fischer, Terrence McDaniel
  • Publication number: 20060283234
    Abstract: A method and system for directly measuring the compression of a ripple spring (23) in a dynamoelectric machine through a corresponding wedge (27). A compression-assessment tool (3) is provided that includes a carriage (32) for supporting a proximity sensor (34). The carriage (32) enables the proximity sensor (34) to be passed over the length of the ripple spring (23), which produces an output signal that is representative of the compression of the ripple spring (23).
    Type: Application
    Filed: June 15, 2005
    Publication date: December 21, 2006
    Inventors: Mark Fischer, Hans Diebacker, Harry Sill, Philip Arbogast
  • Publication number: 20060267413
    Abstract: A method and a system for determining an AC input voltage in an output side of an isolated switching power supply are disclosed. The invention detects a peak-to-peak voltage in the output side of the power supply at a point in a circuit topology of the output side where the peak-to-peak voltage correlates to the AC input voltage. The AC input voltage is determined from the detected peak-to-peak voltage.
    Type: Application
    Filed: May 19, 2005
    Publication date: November 30, 2006
    Applicant: Emerson Electric Co.
    Inventors: Perry Rothenbaum, Bernardo Figueiredo, Mark Fischer
  • Patent number: 7141850
    Abstract: In one aspect, the invention includes a method of forming a gated semiconductor assembly, comprising: a) forming a silicon nitride layer over and against a floating gate; and b) forming a control gate over the silicon nitride layer. In another aspect, the invention includes a method of forming a gated semiconductor assembly, comprising: a) forming a floating gate layer over a substrate; b) forming a silicon nitride layer over the floating gate layer, the silicon nitride layer comprising a first portion and a second portion elevationally displaced from the first portion, the first portion having a greater stoichiometric amount of silicon than the second portion; and c) forming a control gate over the silicon nitride layer.
    Type: Grant
    Filed: January 30, 2004
    Date of Patent: November 28, 2006
    Assignee: Micron Technology, Inc.
    Inventors: Mark A. Helm, Mark Fischer, John T. Moore, Scott Jeffrey DeBoer
  • Publication number: 20060263987
    Abstract: The present invention relates to a laser fuse. The laser fuse comprises an element comprising a heat conductive material. The fuse also includes an absorption element comprising a material with an adjustable capacity for heat or light absorption that overlays the heat conductive element. The fuse also includes an outer insulating element that overlays and encloses the heat conductive element and the absorption element.
    Type: Application
    Filed: July 31, 2006
    Publication date: November 23, 2006
    Inventors: Mark Fischer, Zhiping Yin, Thomas Glass, Kunal Parekh, Gurtej Sandhu
  • Publication number: 20060263947
    Abstract: The present invention relates to a laser fuse. The laser fuse comprises an element comprising a heat conductive material. The fuse also includes an absorption element comprising a material with an adjustable capacity for heat or light absorption that overlays the heat conductive element. The fuse also includes an outer insulating element that overlays and encloses the heat conductive element and the absorption element.
    Type: Application
    Filed: July 31, 2006
    Publication date: November 23, 2006
    Inventors: Mark Fischer, Zhiping Yin, Thomas Glass, Kunal Parekh, Gurtej Sandhu
  • Publication number: 20060234469
    Abstract: In one aspect, the invention includes an isolation region forming method comprising: a) forming an oxide layer over a substrate; b) forming a nitride layer over the oxide layer, the nitride layer and oxide layer having a pattern of openings extending therethrough to expose portions of the underlying substrate; c) etching the exposed portions of the underlying substrate to form openings extending into the substrate; d) after etching the exposed portions of the underlying substrate, removing portions of the nitride layer while leaving some of the nitride layer remaining over the substrate; and e) after removing portions of the nitride layer, forming oxide within the openings in the substrate, the oxide within the openings forming at least portions of isolation regions.
    Type: Application
    Filed: April 21, 2006
    Publication date: October 19, 2006
    Inventors: David Dickerson, Richard Lane, Charles Dennison, Kunal Parekh, Mark Fischer, John Zahurak
  • Patent number: 7119397
    Abstract: A double blanket ion implant method for forming diffusion regions in memory array devices, such as a MOSFET access device is disclosed. The method provides a semiconductor substrate with a gate structure formed on its surface Next, a first pair of diffusion regions are formed in a region adjacent to the channel region by a first blanket ion implantation process. The first blanket ion implantation process has a first energy level and dose. The device is subjected to oxidizing conditions, which form oxidized sidewalls on the gate structure. A second blanket ion implantation process is conducted at the same location as the first ion implantation process adding additional dopant to the diffusion regions. The second blanket ion implantation process has a second energy level and dose. The resultant diffusion regions provide the device with improved static refresh performance over prior art devices.
    Type: Grant
    Filed: February 2, 2004
    Date of Patent: October 10, 2006
    Assignee: Micron Technology, Inc.
    Inventors: Mark Fischer, Charles H. Dennison, Fawad Ahmed, Richard H. Lane, John K. Zahurak, Kunal R. Parekh
  • Patent number: 7057263
    Abstract: In one aspect, the invention includes a semiconductor processing method, comprising: a) providing a silicon nitride material having a surface; b) forming a barrier layer over the surface of the material, the barrier layer comprising silicon and nitrogen; and c) forming a photoresist over and against the barrier layer.
    Type: Grant
    Filed: December 11, 2003
    Date of Patent: June 6, 2006
    Assignee: Micron Technology, Inc.
    Inventors: John T. Moore, Scott Jeffrey DeBoer, Mark Fischer, J. Brett Rolfson, Annette L. Martin, Ardavan Niroomand
  • Publication number: 20060022845
    Abstract: The present invention relates to a system and a process for providing improved operational safety for aircraft. The system/process of the instant invention utilizes real-time, two-way transmission of voice and/or text and flight-critical data between an aircraft and a ground-based computer workstation, where transmitted information monitored and acted upon as necessary by a qualified flight safety person, e.g., a appropriately trained individual (including but not limited to a safety pilot or other person trained in safety procedures). This safety person can perform a number of functions that would enhance flight safety, such as reducing the workload of the primary pilot(s), assisting in the performance of routine checklists, monitoring communications with air traffic control, and advising the pilot in the aircraft on how to handle any in-flight situations that may arise.
    Type: Application
    Filed: December 20, 2004
    Publication date: February 2, 2006
    Inventor: Mark Fischer
  • Publication number: 20060024724
    Abstract: Methods and products for the detection of oncofetal fibronectin indicating molecules in samples are provided. Methods for imaging of oncofetal fibronectin are provided. In some methods provided herein, the sample is treated with a reagent and/or contacted with a non-specific binder. Provided are methods for testing subjects to ascertain health and disease status and to assess the risk of developing a disease or condition. Methods for detecting the presence of oncofetal fibronectin indicating molecules by a variety of methods such as immunoassays and mass spectrometry also are provided. Methods and products for detection of oncofetal fibronection for selection of concepti are provided.
    Type: Application
    Filed: July 29, 2005
    Publication date: February 2, 2006
    Inventors: Robert Hussa, Mark Fischer-Colbrie, Jerome Lapointe, Simon Shorter
  • Publication number: 20060024723
    Abstract: Methods and products for the detection of oncofetal fibronectin indicating molecules in samples are provided. Methods for imaging of oncofetal fibronectin are provided. In some methods provided herein, the sample is treated with a reagent and/or contacted with a non-specific binder. Provided are methods for testing subjects to ascertain health and disease status and to assess the risk of developing a disease or condition. Methods for detecting the presence of oncofetal fibronectin indicating molecules by a variety of methods such as immunoassays and mass spectrometry also are provided. Methods and products for detection of oncofetal fibronection for selection of concepti are provided.
    Type: Application
    Filed: July 29, 2005
    Publication date: February 2, 2006
    Inventors: Robert Hussa, Mark Fischer-Colbrie, Jerome Lapointe, Simon Shorter, Andrew Senyei
  • Publication number: 20060024722
    Abstract: Methods and products for the detection of oncofetal fibronectin indicating molecules in samples are provided. Methods for imaging of oncofetal fibronectin are provided. In some methods provided herein, the sample is treated with a reagent and/or contacted with a non-specific binder. Provided are methods for testing subjects to ascertain health and disease status and to assess the risk of developing a disease or condition. Methods for detecting the presence of oncofetal fibronectin indicating molecules by a variety of methods such as immunoassays and mass spectrometry also are provided. Methods and products for detection of oncofetal fibronection for selection of concepti are provided.
    Type: Application
    Filed: July 29, 2005
    Publication date: February 2, 2006
    Inventors: Mark Fischer-Colbrie, Jerome Lapointe, Durlin Hickok
  • Publication number: 20060024725
    Abstract: Methods and products for the detection of oncofetal fibronectin indicating molecules in samples are provided. Methods for imaging of oncofetal fibronectin are provided. In some methods provided herein, the sample is treated with a reagent and/or contacted with a non-specific binder. Provided are methods for testing subjects to ascertain health and disease status and to assess the risk of developing a disease or condition. Methods for detecting the presence of oncofetal fibronectin indicating molecules by a variety of methods such as immunoassays and mass spectrometry also are provided. Methods and products for detection of oncofetal fibronection for selection of concepti are provided.
    Type: Application
    Filed: July 29, 2005
    Publication date: February 2, 2006
    Inventors: Robert Hussa, Mark Fischer-Colbrie, Jerome LaPointe, Durlin Hickok
  • Patent number: 6967146
    Abstract: In one aspect, the invention includes an isolation region forming method comprising: a) forming an oxide layer over a substrate; b) forming a nitride layer over the oxide layer, the nitride layer and oxide layer having a pattern of openings extending therethrough to expose portions of the underlying substrate; c) etching the exposed portions of the underlying substrate to form openings extending into the substrate; d) after etching the exposed portions of the underlying substrate, removing portions of the nitride layer while leaving some of the nitride layer remaining over the substrate; and e) after removing portions of the nitride layer, forming oxide within the openings in the substrate, the oxide within the openings forming at least portions of isolation regions.
    Type: Grant
    Filed: March 11, 2004
    Date of Patent: November 22, 2005
    Assignee: Micron Technology, Inc.
    Inventors: David L. Dickerson, Richard H. Lane, Charles H. Dennison, Kunal R. Parekh, Mark Fischer, John K. Zahurak
  • Publication number: 20050249610
    Abstract: A pump having top and bottom pieces coupled together by a coupling device features a circumferential clamp that is a lightweight plastic clamp having clamping members, each with one or more strengthening members oriented along a longitudinal axis defined in relation to the top and bottom pieces. The clamping members may include two semi-circular clamping members, each with circumferentially spaced strengthening rib members oriented along the longitudinal axis of the pump housing.
    Type: Application
    Filed: April 21, 2005
    Publication date: November 10, 2005
    Inventor: Mark Fischer
  • Publication number: 20050221540
    Abstract: The present invention relates to a laser fuse. The laser fuse comprises an element comprising a heat conductive material. The fuse also includes an absorption element comprising a material with an adjustable capacity for heat or light absorption that overlays the heat conductive element. The fuse also includes an outer insulating element that overlays and encloses the heat conductive element and the absorption element.
    Type: Application
    Filed: May 31, 2005
    Publication date: October 6, 2005
    Inventors: Mark Fischer, Zhiping Yin, Thomas Glass, Kunal Parekh, Gurtej Sandhu
  • Publication number: 20050218474
    Abstract: The present invention relates to a laser fuse. The laser fuse comprises an element comprising a heat conductive material. The fuse also includes an absorption element comprising a material with an adjustable capacity for heat or light absorption that overlays the heat conductive element. The fuse also includes an outer insulating element that overlays and encloses the heat conductive element and the absorption element.
    Type: Application
    Filed: May 31, 2005
    Publication date: October 6, 2005
    Inventors: Mark Fischer, Zhiping Yin, Thomas Glass, Kunal Parekh, Gurtej Sandhu
  • Publication number: 20050211671
    Abstract: The present invention includes a method for preventing distortion in semi-conductor fabrication. The method comprises providing a substrate comprising a film comprising silicon nitride. The substrate is treated in a vacuum of about 3.0-6.5 Torr in an atmosphere comprising oxygen plasma wherein the oxygen plasma flow rate is at least about 300 sccm oxygen. A resist is applied to the treated substrate and the resist is patterned over the treated substrate.
    Type: Application
    Filed: May 10, 2005
    Publication date: September 29, 2005
    Inventors: Zhiping Yin, Mark Fischer