Patents by Inventor Mark A. Meloni

Mark A. Meloni has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230280560
    Abstract: The disclosure provides an improved fiber optic cable assembly that can protect spectrometers against one or more of the external noise and discharge sources. The improved fiber optic cable assembly provides electrical isolation and/or insulation (EII) protection for optical instruments, such as a spectrometer, in which the fiber optic cable assembly is terminated. The EII protection can include one or more of a non-conductive sheathing at least partially covering the termination and the sheathing, a dielectric break providing electrical isolation between the termination and the sheathing, an isolation boot, and a grounding tether. In one example a fiber optical cable assembly includes: (1) a termination, (2) sheathing, and (3) a dielectric break providing electrical isolation between the termination and the sheathing. A fiber optically coupled system having an improved fiber optic cable assembly is also disclosed.
    Type: Application
    Filed: March 3, 2023
    Publication date: September 7, 2023
    Inventors: Larry Bullock, Mike Whelan, Mark Meloni, William Elliott, David Friedersdorff
  • Patent number: 11690511
    Abstract: An optical device can include: an incident light polarizer positioned to receive incident light and configured to polarize incident light such that polarized incident light is directed to a cornea of a subject; at least one corneal light polarizer, wherein the at least one corneal light polarizer is positioned to receive reflected light from the cornea of the subject and polarize the reflected light to a second polarization; at least one rotating mechanism; and at least one receiver. The receiver can be at least one viewing port optically coupled with the at least one corneal light polarizer or an imaging device (e.g., optical detector). The at least one rotating mechanism is: coupled with the incident light polarizer; coupled with the at least one corneal light polarizer; or coupled with the incident light polarizer and the at least one corneal light polarizer.
    Type: Grant
    Filed: December 1, 2017
    Date of Patent: July 4, 2023
    Assignee: LUTRONIC VISION INC.
    Inventors: Seth Adrian Miller, Mark Meloni
  • Patent number: 10925482
    Abstract: A dosimetry system may comprise a film stack and a laser system for applying a laser beam to the film stack. The system may further comprise an interferometry system configured to acquire from the film stack a first interferometric dataset comprising a first composite signal and a subsequent interferometric dataset comprising a subsequent composite signal. The system may also include a processor for comparing the first and subsequent composite signals, wherein a difference between the first and subsequent composite signals indicates a change in the film stack thickness. A dosimetry method may comprise applying a laser beam to such a film stack, acquiring the first and subsequent interferometric datasets, comparing them to detect a change in the film stack thickness, and ceasing to apply the laser beam to the film stack if the change in the film stack thickness exceeds a predetermined threshold.
    Type: Grant
    Filed: June 15, 2018
    Date of Patent: February 23, 2021
    Assignee: LUTRONIC VISION INC
    Inventors: Seth Adrian Miller, Mark Meloni
  • Patent number: 10925767
    Abstract: Technologies are described for detection of eye surface vibrations to determine cell damage within a treatment area of an eye undergoing laser treatment. Eye surface vibrations may be caused by intraocular pressure waves that form during the laser treatment. For example, the pressure waves may originate from a plurality of bubbles forming and/or rupturing inside cells located in the treatment area. The bubbles may form as energy from a treatment laser beam is absorbed by the retinal tissue. The pressure waves may be measured at the surface of the eye through Doppler vibrometry to determine if the cells within the treatment area have been damaged. The damage to the cells may include cell lysis, a rupture of cell membranes, scarring, and/or photocoagulation, among other examples.
    Type: Grant
    Filed: March 6, 2018
    Date of Patent: February 23, 2021
    Assignee: LUTRONIC VISION INC
    Inventors: Seth Adrian Miller, Mark Meloni
  • Publication number: 20210045915
    Abstract: Technologies are described image a treatment area during laser treatment using a time-gated image capture device and an electronic display. During laser treatment, a physician may monitor a treatment area to ensure efficacy and to prevent over-treatment. Light reflected from the area that includes treatment area may be detected by an image capture component and converted to a signal. An image processor may then generate image data based on the signal and provide the image data to be displayed on an electronic device. A gating component may send instructions to the image capture component and/or the image processor to prevent inclusion of light from one or more laser pulses generated during treatment. Excluding light from the laser pulses may prevent glare in captured images allow a monitoring physician to safely and accurately monitor the treatment area.
    Type: Application
    Filed: February 2, 2018
    Publication date: February 18, 2021
    Applicant: Xinova, LLC
    Inventors: Ezekiel KRUGLICK, Mark MELONI
  • Patent number: 10923324
    Abstract: The disclosure provides a plasma source and an excitation system for excitation of a plasma, and an optical monitoring system. In one embodiment the plasma source includes: (1) a coaxial resonant cavity body having an inner length, and including a first end, a second end, an inner electrode and an outer electrode, (2) a radio frequency signal interface electrically coupled to the inner and outer electrodes at a fixed position along the inner length and configured to provide a radio frequency signal to the coaxial resonant cavity body, (3) a window positioned at the first end of the coaxial resonant cavity body, and (4) a mounting flange positioned proximate the window at the first end of the coaxial resonant cavity body and defining a plasma cavity, wherein the window forms one side of the plasma cavity and isolates the coaxial resonant cavity body from plasma in the plasma cavity.
    Type: Grant
    Filed: January 22, 2019
    Date of Patent: February 16, 2021
    Assignee: Verity Instruments, Inc.
    Inventor: Mark A. Meloni
  • Publication number: 20210000645
    Abstract: Technologies are described for detection of eye surface vibrations to determine cell damage within a treatment area of an eye undergoing laser treatment. Eye surface vibrations may be caused by intraocular pressure waves that form during the laser treatment. For example, the pressure waves may originate from a plurality of bubbles forming and/or rupturing inside cells located in the treatment area. The bubbles may form as energy from a treatment laser beam is absorbed by the retinal tissue. The pressure waves may be measured at the surface of the eye through Doppler vibrometry to determine if the cells within the treatment area have been damaged. The damage to the cells may include cell lysis, a rupture of cell membranes, scarring, and/or photocoagulation, among other examples.
    Type: Application
    Filed: March 6, 2018
    Publication date: January 7, 2021
    Applicant: Xinova, LLC
    Inventors: Seth Adrian MILLER, Mark MELONI
  • Publication number: 20200367746
    Abstract: An optical device can include: an incident light polarizer positioned to receive incident light and configured to polarize incident light such that polarized incident light is directed to a cornea of a subject; at least one corneal light polarizer, wherein the at least one corneal light polarizer is positioned to receive reflected light from the cornea of the subject and polarize the reflected light to a second polarization; at least one rotating mechanism; and at least one receiver. The receiver can be at least one viewing port optically coupled with the at least one corneal light polarizer or an imaging device (e.g., optical detector). The at least one rotating mechanism is: coupled with the incident light polarizer; coupled with the at least one corneal light polarizer; or coupled with the incident light polarizer and the at least one corneal light polarizer.
    Type: Application
    Filed: December 1, 2017
    Publication date: November 26, 2020
    Applicant: XINOVA, LLC
    Inventors: Seth Adrian MILLER, Mark MELONI
  • Publication number: 20200329960
    Abstract: A dosimetry system may comprise a film stack and a laser system for applying a laser beam to the film stack. The system may further comprise an interferometry system configured to acquire from the film stack a first interferometric dataset comprising a first composite signal and a subsequent interferometric dataset comprising a subsequent composite signal. The system may also include a processor for comparing the first and subsequent composite signals, wherein a difference between the first and subsequent composite signals indicates a change in the film stack thickness. A dosimetry method may comprise applying a laser beam to such a film stack, acquiring the first and subsequent interferometric datasets, comparing them to detect a change in the film stack thickness, and ceasing to apply the laser beam to the film stack if the change in the film stack thickness exceeds a predetermined threshold.
    Type: Application
    Filed: June 15, 2018
    Publication date: October 22, 2020
    Applicant: Xinova, LLC
    Inventors: Seth Adrian MILLER, Mark MELONI
  • Patent number: 10794763
    Abstract: An optical system having an OAP mirror collimator is disclosed with a housing, an OAP mirror located within the housing and has an optical axis, a fold plane and a focal point. A fiber optical cable is coupled to the housing and has first and second optical fibers, each having an exit end that form a common end face of the fiber optic cable, wherein the fiber optical cable is rotationally and translationally aligned to the OAP mirror such that the common face is perpendicular to and centered upon the optical axis of the OAP mirror and positioned a fixed distance from the focal point, and wherein the optical axes of the first and second optical fibers are jointly angularly aligned to the fold plane, and the optical axes of the first and second optical fibers deviate from being parallel to the optical axis by no more than 0.15 degrees.
    Type: Grant
    Filed: February 11, 2020
    Date of Patent: October 6, 2020
    Assignee: Verity Instruments, Inc.
    Inventors: Mark A. Meloni, John D. Corless
  • Publication number: 20200264044
    Abstract: An optical system having an OAP mirror collimator is disclosed with a housing, an OAP mirror located within the housing and has an optical axis, a fold plane and a focal point. A fiber optical cable is coupled to the housing and has first and second optical fibers, each having an exit end that form a common end face of the fiber optic cable, wherein the fiber optical cable is rotationally and translationally aligned to the OAP mirror such that the common face is perpendicular to and centered upon the optical axis of the OAP mirror and positioned a fixed distance from the focal point, and wherein the optical axes of the first and second optical fibers are jointly angularly aligned to the fold plane, and the optical axes of the first and second optical fibers deviate from being parallel to the optical axis by no more than 0.15 degrees.
    Type: Application
    Filed: February 11, 2020
    Publication date: August 20, 2020
    Inventors: Mark A. Meloni, John D. Corless
  • Patent number: 10679832
    Abstract: The disclosure provides a plasma source, an excitation system for excitation of a plasma, and a method of operating an excitation measurement system. In one embodiment, the plasma source includes: (1) a coaxial radio frequency (RF) resonator including a first end, a second end, an inner electrode and an outer electrode, (2) a radio frequency interface electrically coupled to the inner and outer electrode and configured to provide an RF signal to the coaxial RF resonator, (3) a flange positioned at the first end of the resonator and defining a plasma cavity, and (4) a window positioned between the first end of the resonator and the flange, and forming one side of the plasma cavity, whereby the coaxial RF resonator is isolated from the plasma.
    Type: Grant
    Filed: June 28, 2018
    Date of Patent: June 9, 2020
    Assignee: Verity Instruments, Inc.
    Inventor: Mark A. Meloni
  • Publication number: 20190157045
    Abstract: The disclosure provides a plasma source and an excitation system for excitation of a plasma, and an optical monitoring system. In one embodiment the plasma source includes: (1) a coaxial resonant cavity body having an inner length, and including a first end, a second end, an inner electrode and an outer electrode, (2) a radio frequency signal interface electrically coupled to the inner and outer electrodes at a fixed position along the inner length and configured to provide a radio frequency signal to the coaxial resonant cavity body, (3) a window positioned at the first end of the coaxial resonant cavity body, and (4) a mounting flange positioned proximate the window at the first end of the coaxial resonant cavity body and defining a plasma cavity, wherein the window forms one side of the plasma cavity and isolates the coaxial resonant cavity body from plasma in the plasma cavity.
    Type: Application
    Filed: January 22, 2019
    Publication date: May 23, 2019
    Inventor: Mark A. Meloni
  • Publication number: 20190013187
    Abstract: The disclosure provides a plasma source, an excitation system for excitation of a plasma, and a method of operating an excitation measurement system. In one embodiment, the plasma source includes: (1) a coaxial radio frequency (RF) resonator including a first end, a second end, an inner electrode and an outer electrode, (2) a radio frequency interface electrically coupled to the inner and outer electrode and configured to provide an RF signal to the coaxial RF resonator, (3) a flange positioned at the first end of the resonator and defining a plasma cavity, and (4) a window positioned between the first end of the resonator and the flange, and forming one side of the plasma cavity, whereby the coaxial RF resonator is isolated from the plasma.
    Type: Application
    Filed: June 28, 2018
    Publication date: January 10, 2019
    Inventor: Mark A. Meloni
  • Patent number: 10002215
    Abstract: Arrayed imaging systems include an array of detectors formed with a common base and a first array of layered optical elements, each one of the layered optical elements being optically connected with a detector in the array of detectors.
    Type: Grant
    Filed: August 15, 2016
    Date of Patent: June 19, 2018
    Assignee: OmniVision Technologies, Inc.
    Inventors: Edward R. Dowski, Paulo E. X. Silveira, George C. Barnes, IV, Vladislav V. Chumachenko, Dennis W. Dobbs, Regis S. Fan, Gregory E. Johnson, Miodrag Scepanovic, Satoru Tachihara, Christopher J. Linnen, Inga Tamayo, Donald Combs, Howard E. Rhodes, James He, John J. Mader, Goran M. Rauker, Kenneth Kubala, Mark Meloni, Brian Schwartz, Robert Cormack, Michael Hepp, Kenneth Ashley Macon, Gary L. Duerksen
  • Publication number: 20160350445
    Abstract: Arrayed imaging systems include an array of detectors formed with a common base and a first array of layered optical elements, each one of the layered optical elements being optically connected with a detector in the array of detectors.
    Type: Application
    Filed: August 15, 2016
    Publication date: December 1, 2016
    Inventors: Edward R. Dowski, JR., Paulo E.X. Silvieri, George C. Barnes, IV, Vladislav V. Chumachenko, Dennis W. Dobbs, Regis S. Fan, Gregory E. Johnson, Miodrag Scepanovic, Satoru Tachihara, Christopher J. Linnen, Inga Tamayo, Donald Combs, Howard E. Rhodes, James He, John J. Mader, Goran M. Rauker, Kenneth Kubala, Mark Meloni, Brian Schwartz, Robert Cormack, Michael Hepp, Kenneth Ashley Macon, Gary L. Duerksen
  • Patent number: 9418193
    Abstract: Arrayed imaging systems include an array of detectors formed with a common base and a first array of layered optical elements, each one of the layered optical elements being optically connected with a detector in the array of detectors.
    Type: Grant
    Filed: December 2, 2013
    Date of Patent: August 16, 2016
    Assignee: OmniVision Technologies, Inc.
    Inventors: Edward R. Dowski, Jr., Paulo E. X. Silvieri, George C. Barnes, IV, Vladislav V. Chumachenko, Dennis W. Dobbs, Regis S. Fan, Gregory E. Johnson, Miodrag Scepanovic, Satoru Tachihara, Christopher J. Linnen, Inga Tamayo, Donald Combs, Howard E. Rhodes, James He, John J. Mader, Kenneth Kubala, Mark Meloni, Brian Schwartz, Robert Cormack, Michael Hepp, Gary L. Duerksen
  • Patent number: 9266201
    Abstract: Technologies are generally described for providing inductively removable assembly bonding. Inductive elements may be placed strategically at bonding locations between two or more coupled components. At disassembly time, the elements may be heated through Radio Frequency (RF) energy causing the bonds to break and components to separate. For example, inductive elements placed near plastic stake bonds between dissimilar materials in an electronic device may be employed to separate the dissimilar materials during a recycling process. According to some examples, the elements may also be heated through a directly applied electric current via a network of connections designed into the assembly.
    Type: Grant
    Filed: October 1, 2013
    Date of Patent: February 23, 2016
    Assignee: Empire Technology Development LLC
    Inventors: Ezekiel Kruglick, Mark Meloni
  • Patent number: 8807189
    Abstract: Implementations and techniques for removing and segregating components from printed circuit boards are generally disclosed.
    Type: Grant
    Filed: December 28, 2012
    Date of Patent: August 19, 2014
    Assignee: Empire Technology Development LLC
    Inventor: Mark Meloni
  • Publication number: 20140220713
    Abstract: Arrayed imaging systems include an array of detectors formed with a common base and a first array of layered optical elements, each one of the layered optical elements being optically connected with a detector in the array of detectors.
    Type: Application
    Filed: December 2, 2013
    Publication date: August 7, 2014
    Applicant: Omnivision Technologies Inc.
    Inventors: Edward R. Dowski, JR., Paulo E.X. Silvieri, George C. Bames, IV, Vladislav V. Chumachenko, Dennis W. Dobbs, Regis S. Fan, Gregory E. Johnson, Miodrag Scepanovic, Satoru Tachihara, Christopher J. Linnen, Inga Tamayo, Donald Combs, Howard E. Rhodes, James He, John J. Mader, Goran M. Rauker, Kenneth Kubala, Mark Meloni, Brian Schwartz, Robert Cormack, Michael Hepp, Kenneth Ashley Macon, Gary L. Duerksen