Patents by Inventor Mark A. Reed

Mark A. Reed has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220212193
    Abstract: An apparatus for separating an analyte from a test sample, such as bacteria from blood components, based on their dielectric properties, localizing or condensing the analyte, flushing substantially all remaining waste products from the test sample, and detecting low concentrations of the analyte. The module array includes a plurality of microfluidic channels with connecting microfluidic waste channels for directing undesired material away from the analyte.
    Type: Application
    Filed: March 24, 2022
    Publication date: July 7, 2022
    Inventors: Monika Weber, Siu Lung Lo, Hazael Fabrizio Montanaro Ochoa, Christopher Daniel Yerino, Mark A. Reed
  • Patent number: 11325124
    Abstract: An apparatus for separating an analyte from a test sample, such as bacteria from blood components, based on their dielectric properties, localizing or condensing the analyte, flushing substantially all remaining waste products from the test sample, and detecting low concentrations of the analyte. The module array includes a plurality of microfluidic channels with connecting microfluidic waste channels for directing undesired material away from the analyte. An electric field is applied causing a positive dielectrophoretic force to the analyte to capture the analyte. The electric field is applied to at least one electrode having a plurality of concentric rings or concentric arcs extending radially outwards from a center point, electrically connected to a voltage source such that when voltage is applied to the at least one electrode, the concentric rings or concentric arcs alternate in voltage potential.
    Type: Grant
    Filed: December 27, 2019
    Date of Patent: May 10, 2022
    Assignee: Fluid-Screen, Inc.
    Inventors: Monika Weber, Siu Lung Lo, Hazael Fabrizio Montanaro Ochoa, Christopher Daniel Yerino, Mark A. Reed
  • Patent number: 11198126
    Abstract: An apparatus for separating an analyte from a test sample, such as bacteria from blood components, based on their dielectric properties, localizing or condensing the analyte, flushing substantially all remaining waste products from the test sample, and detecting low concentrations of the analyte. The module array includes a plurality of microfluidic channels with connecting microfluidic waste channels for directing undesired material away from the analyte. An electric field is applied causing a positive dielectrophoretic force to the analyte to capture the analyte. The electric field is applied to at least one electrode having a plurality of concentric rings or concentric arcs extending radially outwards from a center point, electrically connected to a voltage source such that when voltage is applied to the at least one electrode, the concentric rings or concentric arcs alternate in voltage potential.
    Type: Grant
    Filed: December 24, 2014
    Date of Patent: December 14, 2021
    Assignee: Fluid-Screen, Inc.
    Inventors: Monika Weber, Siu Lung Lo, Hazael Fabrizio Montanaro Ochoa, Christopher Daniel Yerino, Mark A. Reed
  • Publication number: 20210039098
    Abstract: An apparatus for separating an analyte from a test sample, such as bacteria from blood components, based on their dielectric properties, localizing or condensing the analyte, flushing substantially all remaining waste products from the test sample, and detecting low concentrations of the analyte. The module array includes a plurality of microfluidic channels with connecting microfluidic waste channels for directing undesired material away from the analyte. An electric field is applied causing a positive dielectrophoretic force to the analyte to capture the analyte. The electric field is applied to at least one electrode having a plurality of concentric rings or concentric arcs extending radially outwards from a center point, electrically connected to a voltage source such that when voltage is applied to the at least one electrode, the concentric rings or concentric arcs alternate in voltage potential.
    Type: Application
    Filed: October 15, 2020
    Publication date: February 11, 2021
    Applicant: Fluid-Screen, Inc.
    Inventors: Monika Weber, Siu Lung Lo, Hazael Fabrizio Montanaro Ochoa, Christopher Daniel Yerino, Mark A. Reed
  • Publication number: 20210039099
    Abstract: An apparatus for separating an analyte from a test sample, such as bacteria from blood components, based on their dielectric properties, localizing or condensing the analyte, flushing substantially all remaining waste products from the test sample, and detecting low concentrations of the analyte. The module array includes a plurality of microfluidic channels with connecting microfluidic waste channels for directing undesired material away from the analyte. An electric field is applied causing a positive dielectrophoretic force to the analyte to capture the analyte. The electric field is applied to at least one electrode having a plurality of concentric rings or concentric arcs extending radially outwards from a center point, electrically connected to a voltage source such that when voltage is applied to the at least one electrode, the concentric rings or concentric arcs alternate in voltage potential.
    Type: Application
    Filed: October 15, 2020
    Publication date: February 11, 2021
    Applicant: Fluid-Screen, Inc.
    Inventors: Monika Weber, Siu Lung Lo, Hazael Fabrizio Montanaro Ochoa, Christopher Daniel Yerino, Mark A. Reed
  • Publication number: 20200129980
    Abstract: An apparatus for separating an analyte from a test sample, such as bacteria from blood components, based on their dielectric properties, localizing or condensing the analyte, flushing substantially all remaining waste products from the test sample, and detecting low concentrations of the analyte. The module array includes a plurality of microfluidic channels with connecting microfluidic waste channels for directing undesired material away from the analyte. An electric field is applied causing a positive dielectrophoretic force to the analyte to capture the analyte. The electric field is applied to at least one electrode having a plurality of concentric rings or concentric arcs extending radially outwards from a center point, electrically connected to a voltage source such that when voltage is applied to the at least one electrode, the concentric rings or concentric arcs alternate in voltage potential.
    Type: Application
    Filed: December 27, 2019
    Publication date: April 30, 2020
    Inventors: Monika Weber, Siu Lung Lo, Hazael Fabrizio Montanaro Ochoa, Christopher Daniel Yerino, Mark A. Reed
  • Patent number: 10545142
    Abstract: The present invention relates to uniform nanostructure biosensors and methods of calibrating the response of nanostructure biosensors. The invention overcomes device to device variability that has made quantitative detection difficult. The described biosensors have uniform characteristics that allow for more reliable comparison across devices. The methods of the invention comprise normalizing the initial current rate, as measured by the nanostructure biosensor following the addition of an analyte, to device characteristics of the biosensor. The device characteristics of the biosensor which can be used to normalize the response include baseline current and transconductance, Calibration of responses allows for the generation of calibration curves for use in all devices to quantitatively detect an analyte, without the need for individual device calibration.
    Type: Grant
    Filed: March 10, 2017
    Date of Patent: January 28, 2020
    Assignee: Yale University
    Inventors: Tarek M. Fahmy, Aleksandar Vacic, Mark A. Reed
  • Patent number: 9938249
    Abstract: In general, among other things, compounds of Formula I are provided: in which R11 is e.g., 4-(pyrrolidin-1-yl)piperidin-1-yl, N-methyl-3-(pyrrolidin-1-yl)propan-1-amino, N1,N1,N3-trimethylpropane-1,3-diamino, N,N-dimethylpiperidin-4-amino, 3-(pyrrolidin-1-ylmethyl)azetidin-1-yl, 3-(pyrrolidin-1-ylmethanon)azetidin-1-yl, or 3-(morpholin-1-ylmethyl)azetidin-1-yl; R13 is, e.g., phenyl optionally substituted with one or more substituents; and R12 and R14 are each independently hydrogen or alkyl. Methods of treatment are also provided.
    Type: Grant
    Filed: February 27, 2015
    Date of Patent: April 10, 2018
    Assignee: Treventis Corporation
    Inventors: Mark A. Reed, Thomas K. Wood, Scott C. Banfield, Christopher J. Barden, Arun Yadav, Erhu Lu, Fan Wu
  • Patent number: 9921216
    Abstract: The present invention relates to a device and method for determining the presence of a specific compound in solution. The device includes a nanosensor having an electrically conducting pathway between at least a first and second contact. The device also includes a first receptor, suitable for binding a specific compound in the solution, attached to the nanosensor, and a second receptor also suitable for binding the specific compound while the specific compound is bound to the first receptor. The second receptor is attached to an enzyme added to the solution. When the solution having the second receptor is added to the device, and a second compound that is a substrate for the enzyme is subsequently added to the solution, a measured difference in an electrical property in the device before and after the application of the second compound is indicative of the presence of the specific compound in the solution.
    Type: Grant
    Filed: June 30, 2015
    Date of Patent: March 20, 2018
    Assignee: Yale University
    Inventors: Tarek M. Fahmy, Eric D. Stern, Mark A. Reed, Aleksandar Vacic, James F. Klemic
  • Publication number: 20170242000
    Abstract: The present invention relates to uniform nanostructure biosensors and methods of calibrating the response of nanostructure biosensors. The invention overcomes device to device variability that has made quantitative detection difficult. The described biosensors have uniform characteristics that allow for more reliable comparison across devices. The methods of the invention comprise normalizing the initial current rate, as measured by the nanostructure biosensor following the addition of an analyte, to device characteristics of the biosensor. The device characteristics of the biosensor which can be used to normalize the response include baseline current and transconductance, Calibration of responses allows for the generation of calibration curves for use in all devices to quantitatively detect an analyte, without the need for individual device calibration.
    Type: Application
    Filed: March 10, 2017
    Publication date: August 24, 2017
    Inventors: Tarek M. Fahmy, Aleksandar Vacic, Mark A. Reed
  • Patent number: 9739771
    Abstract: The present invention provides a microfluidic purification chip for capturing a biomarker from a physiological solution. The present invention also provides a method of capturing and releasing a biomarker, wherein the biomarker is originally in a physiological solution. The present invention further provides a method of pre-purifying and measuring the concentration of a biomarker in a physiological solution.
    Type: Grant
    Filed: August 26, 2011
    Date of Patent: August 22, 2017
    Assignee: YALE UNIVERSITY
    Inventors: Tarek M. Fahmy, Eric D. Stern, Mark A. Reed
  • Publication number: 20170174641
    Abstract: In general, among other things, compounds of Formula I are provided: in which R11 is e.g., 4-(pyrrolidin-1-yl)piperidin-1-yl, N-methyl-3-(pyrrolidin-1-yl)propan-1-amino, N1,N1,N3-trimethylpropane-1,3-diamino, N,N-dimethylpiperidin-4-amino, 3-(pyrrolidin-1-ylmethyl)azetidin-1-yl, 3-(pyrrolidin-1-ylmethanon)azetidin-1-yl, or 3-(morpholin-1-ylmethyl)azetidin-1-yl; R13 is, e.g., phenyl optionally substituted with one or more substituents; and R12 and R14 are each independently hydrogen or alkyl. Methods of treatment are also provided.
    Type: Application
    Filed: February 27, 2015
    Publication date: June 22, 2017
    Applicant: Treventis Corporation
    Inventors: Mark A. Reed, Thomas K. Wood, Scott C. Banfield, Christopher J. Barden, Arun Yadav, Erhu Lu, Fan Wu
  • Patent number: 9599614
    Abstract: The present invention relates to uniform nanostructure biosensors and methods of calibrating the response of nanostructure biosensors. The invention overcomes device to device variability that has made quantitative detection difficult. The described biosensors have uniform characteristics that allow for more reliable comparison across devices. The methods of the invention comprise normalizing the initial current rate, as measured by the nanostructure biosensor following the addition of an analyte, to device characteristics of the biosensor. The device characteristics of the biosensor which can be used to normalize the response include baseline current and transconductance. Calibration of responses allows for the generation of calibration curves for use in all devices to quantitatively detect an analyte, without the need for individual device calibration.
    Type: Grant
    Filed: March 14, 2012
    Date of Patent: March 21, 2017
    Assignee: YALE UNIVERSITY
    Inventors: Tarek M. Fahmy, Aleksandar Vacic, Mark A. Reed
  • Publication number: 20160264535
    Abstract: In general, among other things, compounds of Formula I are provided: in which R11 is selected from the group consisting of benzylamino, N-methylbenzylamino, morpholino, thiomorpholino, pyrrolidino, etc.; R13 is selected from the group consisting of 3-(1-ethanol-2-yl)phenyl, 3-(1-ol-2,2,2-trifluoroethan-2-yl)phenyl, 2-(1-ol-2,2,2-trifluoroethan-2-yl)phenyl, etc.; and R12 and R14 are each independently hydrogen or alkyl. Methods of treatment are also provided.
    Type: Application
    Filed: March 24, 2016
    Publication date: September 15, 2016
    Applicant: Treventis Corporation
    Inventors: Mark A. Reed, Thomas K. Wood, Scott C. Banfield, Christopher J. Barden
  • Patent number: 9328078
    Abstract: In general, among other things, compounds of Formula I are provided: in which R11 is selected from the group consisting of benzylamino, N-methylbenzylamino, morpholino, thiomorpholino, pyrrolidino, etc.; R13 is selected from the group consisting of 3-(1-ethanol-2-yl)phenyl, 3-(1-ol-2,2,2-trifluoroethan-2-yl)phenyl, 2-(1-ol-2,2,2-trifluoroethan-2-yl)phenyl, etc.; and R12 and R14 are each independently hydrogen or alkyl. Methods of treatment are also provided.
    Type: Grant
    Filed: August 22, 2013
    Date of Patent: May 3, 2016
    Assignee: Treventis Corporation
    Inventors: Mark A Reed, Thomas K Wood, Scott C Banfield, Christopher J Barden
  • Patent number: 9316612
    Abstract: The present invention provides a regenerative nanosensor device for the detection of one or more analytes of interest. In certain embodiments, the device comprises a nanostructure having a reversible functionalized coating comprising a supramolecular assembly. Controllable and selective disruption of the assembly promotes desorption of at least part of the reversible functionalized coating thereby allowing for reuse of the regenerative device.
    Type: Grant
    Filed: January 3, 2014
    Date of Patent: April 19, 2016
    Assignee: Yale University
    Inventors: Mark A. Reed, Xuexin Duan, Nitin Rajan
  • Publication number: 20160054315
    Abstract: The present invention relates to a device and method for determining the presence of a specific compound in solution. The device includes a nanosensor having an electrically conducting pathway between at least a first and second contact. The device also includes a first receptor, suitable for binding a specific compound in the solution, attached to the nanosensor, and a second receptor also suitable for binding the specific compound while the specific compound is bound to the first receptor. The second receptor is attached to an enzyme added to the solution. When the solution having the second receptor is added to the device, and a second compound that is a substrate for the enzyme is subsequently added to the solution, a measured difference in an electrical property in the device before and after the application of the second compound is indicative of the presence of the specific compound in the solution.
    Type: Application
    Filed: June 30, 2015
    Publication date: February 25, 2016
    Inventors: Tarek M. Fahmy, Eric D. Stern, Mark A. Reed, Aleksandar Vacic, James F. Klemic
  • Patent number: 9188594
    Abstract: The present invention relates to a device and method for determining the presence of a specific compound in solution. The device includes a nanosensor having an electrically conducting pathway between at least a first and second contact. The device also includes a first receptor, suitable for binding a specific compound in the solution, attached to the nanosensor, and a second receptor also suitable for binding the specific compound while the specific compound is bound to the first receptor. The second receptor is attached to an enzyme added to the solution. When the solution having the second receptor is added to the device, and a second compound that is a substrate for the enzyme is subsequently added to the solution, a measured difference in an electrical property in the device before and after the application of the second compound is indicative of the presence of the specific compound in the solution.
    Type: Grant
    Filed: August 4, 2009
    Date of Patent: November 17, 2015
    Assignee: Yale University
    Inventors: Tarek M. Fahmy, Eric D. Stern, Mark A. Reed, Aleksandar Vacic, James F. Klemic
  • Publication number: 20150266838
    Abstract: In general, among other things, compounds of Formula I are provided: in which R11 is selected from the group consisting of benzylamino, N-methylbenzylamino, morpholino, thiomorpholino, pyrrolidino, etc.; R13 is selected from the group consisting of 3-(1-ethanol-2-yl)phenyl, 3-(1-ol-2,2,2-trifluoroethan-2-yl)phenyl, 2-(1-ol-2,2,2-trifluoroethan-2-yl)phenyl, etc.; and R12 and R14 are each independently hydrogen or alkyl. Methods of treatment are also provided.
    Type: Application
    Filed: August 22, 2013
    Publication date: September 24, 2015
    Inventors: Mark A. Reed, Thomas K. Wood, Scott C. Banfield, Christopher J. Barden
  • Patent number: 9120105
    Abstract: An apparatus and method for separating an analyte from a test sample, such as bacteria from blood components, based on their dielectric properties, localizing or condensing the analyte, flushing substantially all remaining waste products from the test sample, and detecting low concentrations of the analyte. Species movement is caused by a module array imparting opposing dielectrophoretic forces. The module array includes a plurality of microfluidic channels with connecting microfluidic waste channels for directing undesired material away from the analyte. An electric field is applied causing a positive dielectrophoretic force to the analyte to capture the analyte. The Clausius-Mossotti factor of the analyte is changed by flushing the analyte with a reference solution, which causes a negative dielectrophoretic force to facilitate release of the analyte. A field effect nanowire or nanoribbon sensor detects the analyte after capture.
    Type: Grant
    Filed: October 31, 2012
    Date of Patent: September 1, 2015
    Inventors: Monika Weber, Siu Lung Lo, Hazael Fabrizio Montanaro Ochoa, Christopher Daniel Yerino, Mark A. Reed