Patents by Inventor Mark Armstrong

Mark Armstrong has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11302777
    Abstract: A nanowire device having a plurality of internal spacers and a method for forming said internal spacers are disclosed. In an embodiment, a semiconductor device comprises a nanowire stack disposed above a substrate, the nanowire stack having a plurality of vertically-stacked nanowires, a gate structure wrapped around each of the plurality of nanowires, defining a channel region of the device, the gate structure having gate sidewalls, a pair of source/drain regions on opposite sides of the channel region; and an internal spacer on a portion of the gate sidewall between two adjacent nanowires, internal to the nanowire stack. In an embodiment, the internal spacers are formed by depositing spacer material in dimples etched adjacent to the channel region. In an embodiment, the dimples are etched through the channel region. In another embodiment, the dimples are etched through the source/drain region.
    Type: Grant
    Filed: September 4, 2020
    Date of Patent: April 12, 2022
    Assignee: Sony Group Corporation
    Inventors: Seiyon Kim, Kelin J. Kuhn, Tahir Ghani, Anand S. Murthy, Mark Armstrong, Rafael Rios, Abhijit Jayant Pethe, Willy Rachmady
  • Patent number: 11302790
    Abstract: Fin shaping using templates, and integrated circuit structures resulting therefrom, are described. For example, integrated circuit structure includes a semiconductor fin having a protruding fin portion above an isolation structure above a substrate. The protruding fin portion has a vertical portion and one or more lateral recess pairs in the vertical portion. A gate stack is over and conformal with the protruding fin portion of the semiconductor fin. A first source or drain region is at a first side of the gate stack. A second source or drain region is at a second side of the gate stack opposite the first side of the gate stack.
    Type: Grant
    Filed: February 23, 2018
    Date of Patent: April 12, 2022
    Assignee: Intel Corporation
    Inventors: Leonard P. Guler, Biswajeet Guha, Mark Armstrong, William Hsu, Tahir Ghani, Swaminathan Sivakumar
  • Publication number: 20220093382
    Abstract: Inductively coupled plasma (ICP) analyzers use an ICP torch to generate a plasma in which a sample is atomized an ionized. Analysis of the atomic ions can be performed by atomic analysis, such as mass spectrometry (MS) or atomic emission spectrometry (AES). Particle based ICP analysis includes analysis of particles such as cells, beads, or laser ablation plumes, by atomizing and ionizing particles in an ICP torch followed by atomic analysis. In mass cytometry, mass tags of particles are analyzed by mass spectrometry, such as by ICP-MS. Systems and methods of the subject application include one or more of: a demountable ICP torch holder assembly, an external ignition device; an ICP load coil comprising an annular fin, particle suspension sample introduction fluidics, and ICP analyzers thereof.
    Type: Application
    Filed: September 9, 2021
    Publication date: March 24, 2022
    Applicant: Fluidigm Canada Inc.
    Inventors: Alexander Loboda, Raymond Jong, Michael Sullivan, Serguei Vorobiev, Robert Rotenberg, Emil D. Stratulativ, Maxim Voronov, Mark Armstrong
  • Publication number: 20220052178
    Abstract: A method comprising: forming a substrate; forming a first nanowire over the substrate; forming a second nanowire over the substrate; forming a gate over a portion of the first and second nanowires; implanting a dopant such that a region between the first and second nanowires under the gate does not receive the dopant while a region between the first and second nanowires away from the gate receives the dopant, wherein the dopant amorphize a material of the region between the first and second nanowires away from the gate; and isotopically etching of the region between the first and second nanowires away from the gate.
    Type: Application
    Filed: October 29, 2021
    Publication date: February 17, 2022
    Applicant: Intel Corporation
    Inventors: Mark Armstrong, Biswajeet Guha, Jun Sung Kang, Bruce Beattie, Tahir Ghani
  • Publication number: 20220051946
    Abstract: Fabrication of narrow and wide structures based on lithographic patterning of exclusively narrow mask structures. Multi-patterning may be employed to define narrow mask structures. Wide mask structures may be derived through a process-based merging of multiple narrow mask structures. The merge may include depositing a cap layer over narrow structures, filling in minimum spaces. The cap layer may be removed leaving residual cap material only within minimum spaces. Narrow and wide structures may be etched into an underlayer based on a summation of the narrow mask structures and residual cap material. A plug pattern may further mask portions of the cap layer not completely filling space between adjacent mask structures. The underlayer may then be etched based on a summation of the narrow mask structures, plug pattern, and residual cap material. Such methods may be utilized to integrate nanoribbon transistors with nanowire transistors in an integrated circuit (IC).
    Type: Application
    Filed: November 1, 2021
    Publication date: February 17, 2022
    Applicant: Intel Corporation
    Inventors: Leonard P. Guler, Biswajeet Guha, Mark Armstrong, Tahir Ghani, William Hsu
  • Patent number: 11207244
    Abstract: According to a first embodiment, a feeding bottle comprises a vessel, collar, and nipple. The nipple comprises a base portion, a teat portion, an areola portion allowing movement of the teat portion towards and away from the base portion. According to a second embodiment, a feeding bottle comprises a vessel, collar, nipple and handle portion removeably secured to the vessel by the collar. The invention includes a flexible region or regions to provide a more natural feeding by closely mimicking the human breast.
    Type: Grant
    Filed: March 22, 2021
    Date of Patent: December 28, 2021
    Assignee: Mayborn (UK) Limited
    Inventors: Arnold Rees, Ian Webb, Mark Armstrong, Tom Cotton
  • Patent number: 11205715
    Abstract: A method comprising: forming a substrate; forming a first nanowire over the substrate; forming a second nanowire over the substrate; forming a gate over a portion of the first and second nanowires; implanting a dopant such that a region between the first and second nanowires under the gate does not receive the dopant while a region between the first and second nanowires away from the gate receives the dopant, wherein the dopant amorphize a material of the region between the first and second nanowires away from the gate; and isotopically etching of the region between the first and second nanowires away from the gate.
    Type: Grant
    Filed: August 21, 2017
    Date of Patent: December 21, 2021
    Assignee: INTEL CORPORATION
    Inventors: Mark Armstrong, Biswajeet Guha, Jun Sung Kang, Bruce Beattie, Tahir Ghani
  • Patent number: 11164790
    Abstract: Fabrication of narrow and wide structures based on lithographic patterning of exclusively narrow mask structures. Multi-patterning may be employed to define narrow mask structures. Wide mask structures may be derived through a process-based merging of multiple narrow mask structures. The merge may include depositing a cap layer over narrow structures, filling in minimum spaces. The cap layer may be removed leaving residual cap material only within minimum spaces. Narrow and wide structures may be etched into an underlayer based on a summation of the narrow mask structures and residual cap material. A plug pattern may further mask portions of the cap layer not completely filling space between adjacent mask structures. The underlayer may then be etched based on a summation of the narrow mask structures, plug pattern, and residual cap material. Such methods may be utilized to integrate nanoribbon transistors with nanowire transistors in an integrated circuit (IC).
    Type: Grant
    Filed: August 17, 2017
    Date of Patent: November 2, 2021
    Assignee: Intel Corporation
    Inventors: Leonard P Guler, Biswajeet Guha, Mark Armstrong, Tahir Ghani, William Hsu
  • Patent number: 11150348
    Abstract: A LiDAR system includes one or more light sources configured to emit a set of light pulses in a temporal sequence with randomized temporal spacings between adjacent light pulses, one or more detectors configured to receive a set of return light pulses, and a processor configured to: determine a time of flight for each return light pulse of the set of return light pulses; and obtain a point cloud based on the times of flight of the set of return light pulses. Each point corresponds to a respective return light pulse. The processor is further configured to, for each respective point of the set of points in the point cloud: analyze spatial and temporal relationships between the respective point and a set of neighboring points in the set of points; and evaluate a quality factor for the respective point based on the spatial and temporal relationships.
    Type: Grant
    Filed: September 25, 2020
    Date of Patent: October 19, 2021
    Assignee: Cepton Technologies, Inc.
    Inventors: Jon Day Allen, Dongyi Liao, Mark Armstrong McCord
  • Patent number: 11152352
    Abstract: A dual mode snap back circuit device is disclosed. The dual mode snap back device may be used for electrostatic discharge (ESD) protection, and may provide both positive ESD protection and negative ESD protection. The dual mode snap back device may implement both an n-type metal-oxide-semiconductor (NMOS) transistor (e.g., a gate-grounded NMOS transistor, such as a gate-grounded extended drain NMOS (GGEDNMOS) transistor) to provide protection against positive ESD events and a bipolar junction transistor (BJT) (e.g., a PNP BJT) to provide protection against negative ESD events. Other embodiments may be described and claimed.
    Type: Grant
    Filed: March 28, 2019
    Date of Patent: October 19, 2021
    Assignee: Intel Corporation
    Inventors: Akm Ahsan, Mark Armstrong, Guannan Liu
  • Patent number: 11145732
    Abstract: Disclosed herein are transistor arrangements of field-effect transistors with dual thickness gate dielectrics. An example transistor arrangement includes a semiconductor channel material, a source region and a drain region, provided in the semiconductor material, and a gate stack provided over a portion of the semiconductor material that is between the source region and the drain region. The gate stack has a thinner gate dielectric in a portion that is closer to the source region and a thicker gate dielectric in a portion that is closer to the drain region, which may effectively realize tunable ballast resistance integrated with the transistor arrangement and may help increase the breakdown voltage and/or decrease the gate leakage of the transistor.
    Type: Grant
    Filed: November 30, 2019
    Date of Patent: October 12, 2021
    Assignee: Intel Corporation
    Inventors: Ayan Kar, Kalyan C. Kolluru, Nicholas A. Thomson, Mark Armstrong, Sameer Jayanta Joglekar, Rui Ma, Sayan Saha, Hyuk Ju Ryu, Akm A. Ahsan
  • Publication number: 20210302543
    Abstract: A LiDAR sensor includes a first lens, a first laser source configured to emit a plurality of first light pulses to be collimated by the first lens, a flood illumination source configured to emit a plurality of second light pulses as diverging light rays, a second lens configured to receive and focus (i) a portion of any one of the plurality of first light pulses and (ii) a portion of any one of the plurality of second light pulses that are reflected off of the one or more objects, a detector configured to detect (i) the portion of any one of the plurality of first light pulses and (ii) the portion of any one of the plurality of second light pulses, and a processor configured to construct a three-dimensional image of the one or more objects based on the detected portions of first light pulses and second light pulses.
    Type: Application
    Filed: March 18, 2021
    Publication date: September 30, 2021
    Applicant: Cepton Technologies, Inc
    Inventor: Mark Armstrong McCord
  • Publication number: 20210244622
    Abstract: According to a first embodiment, a feeding bottle comprises a vessel, collar, and nipple. The nipple comprises a base portion, a teat portion, an areola portion allowing movement of the teat portion towards and away from the base portion. According to a second embodiment, a feeding bottle comprises a vessel, collar, nipple and handle portion removeably secured to the vessel by the collar. The invention includes a flexible region or regions to provide a more natural feeding by closely mimicking the human breast.
    Type: Application
    Filed: March 22, 2021
    Publication date: August 12, 2021
    Inventors: Arnold Rees, Ian Webb, Mark Armstrong, Tom Cotton
  • Publication number: 20210167180
    Abstract: Disclosed herein are transistor arrangements of field-effect transistors with dual thickness gate dielectrics. An example transistor arrangement includes a semiconductor channel material, a source region and a drain region, provided in the semiconductor material, and a gate stack provided over a portion of the semiconductor material that is between the source region and the drain region. The gate stack has a thinner gate dielectric in a portion that is closer to the source region and a thicker gate dielectric in a portion that is closer to the drain region, which may effectively realize tunable ballast resistance integrated with the transistor arrangement and may help increase the breakdown voltage and/or decrease the gate leakage of the transistor.
    Type: Application
    Filed: November 30, 2019
    Publication date: June 3, 2021
    Applicant: Intel Corporation
    Inventors: Ayan Kar, Kalyan C. Kolluru, Nicholas A. Thomson, Mark Armstrong, Sameer Jayanta Joglekar, Rui Ma, Sayan Saha, Hyuk Ju Ryu, Akm A. Ahsan
  • Publication number: 20210107661
    Abstract: Sleep systems for aircraft are disclosed. An example sleep system includes a divider having a plurality of panels, each panel defining a pocket, and a lateral sleep apparatus positioned adjacent a seat, the lateral sleep apparatus to be positioned at least partially in the pocket of the panel.
    Type: Application
    Filed: December 22, 2020
    Publication date: April 15, 2021
    Inventors: Nyein Chan Aung, Mark Armstrong, Arthur de Bono, Robbie Napper
  • Patent number: D917287
    Type: Grant
    Filed: June 21, 2019
    Date of Patent: April 27, 2021
    Assignee: The Procter & Gamble Company
    Inventors: Pieter Dirk Jenny Maria Van Den Bergh, Richard Hagee, Mark Armstrong
  • Patent number: D918730
    Type: Grant
    Filed: June 21, 2019
    Date of Patent: May 11, 2021
    Assignee: The Procter & Gamble Company
    Inventors: Pieter Dirk Jenny Maria Van Den Bergh, Richard Hagee, Mark Armstrong
  • Patent number: D921486
    Type: Grant
    Filed: June 21, 2019
    Date of Patent: June 8, 2021
    Assignee: The Procter & Gamble Company
    Inventors: Pieter Dirk Jenny Maria Van Den Bergh, Richard Hagee, Mark Armstrong
  • Patent number: D922202
    Type: Grant
    Filed: June 21, 2019
    Date of Patent: June 15, 2021
    Assignee: The Procter & Gamble Company
    Inventors: Pieter Dirk Jenny Maria Van Den Bergh, Richard Hagee, Mark Armstrong
  • Patent number: D948343
    Type: Grant
    Filed: June 21, 2019
    Date of Patent: April 12, 2022
    Assignee: The Procter & Gamble Company
    Inventors: Pieter Dirk Jenny Maria Van Den Bergh, Richard Hagee, Mark Armstrong