Patents by Inventor Mark C. Hakey

Mark C. Hakey has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7271079
    Abstract: A method of fabricating a structure and fabricating related semiconductor transistors and novel semiconductor transistor structures. The method of fabricating the structure includes: providing a substrate having a top surface; forming an island on the top surface of the substrate, a top surface of the island parallel to the top surface of the substrate, a sidewall of the island extending between the top surface of the island and the top surface of the substrate; forming a plurality of carbon nanotubes on the sidewall of the island; and performing an ion implantation, the ion implantation penetrating into the island and blocked from penetrating into the substrate in regions of the substrate masked by the island and the carbon nanotubes.
    Type: Grant
    Filed: April 6, 2005
    Date of Patent: September 18, 2007
    Assignee: International Business Machines Corporation
    Inventors: Toshiharu Furukawa, Mark C. Hakey, Steven J. Holmes, David V. Horak, Charles W. Koburger, III
  • Patent number: 7265013
    Abstract: A structure fabrication method. The method comprises providing a structure which comprises (a) a to-be-etched layer, (b) a memory region, (c) a positioning region, (d) and a capping region on top of one another. Then, the positioning region is indented. Then, a conformal protective layer is formed on exposed-to-ambient surfaces of the structure. Then, portions of the conformal protective layer are removed so as to expose the capping region to the surrounding ambient without exposing the memory region to the surrounding ambient. Then, the capping region is removed so as to expose the positioning region to the surrounding ambient. Then, the positioning region is removed so as to expose the memory region to the surrounding ambient. Then, the memory region is directionally etched with remaining portions of the conformal protection layer serving as a blocking mask.
    Type: Grant
    Filed: September 19, 2005
    Date of Patent: September 4, 2007
    Assignee: International Business Machines Corporation
    Inventors: Toshiharu Furukawa, Mark C. Hakey, Steven J. Holmes, David V. Horak, Charles W. Koburger, III, Kirk D. Peterson
  • Patent number: 7256415
    Abstract: Disclosed are non-volatile memory devices that incorporate a series of single or double memory cells. The single memory cells are essentially “U” shaped. The double memory cells comprise two essentially “U” shaped memory cells. Each memory cell comprises a memory element having a bi-stable layer sandwiched between two conductive layers. A temporary conductor may be applied to a series of cells and used to bulk condition the bi-stable layers of the cells. Also, due to the “U” shape of the cells, a cross point wire array may be used to connect a series of cells. The cross point wire array allows the memory elements of each cell to be individually identified and addressed for storing information and also allows for the information stored in the memory elements in all of the cells in the series to be simultaneously erased using a block erase process.
    Type: Grant
    Filed: May 31, 2005
    Date of Patent: August 14, 2007
    Assignee: International Business Machines Corporation
    Inventors: Toshijaru Furukawa, Mark C. Hakey, Steven J. Holmes, David V. Horak, Charles W. Koburger, III, Chung H. Lam, Gerhard I. Meijer
  • Patent number: 7256114
    Abstract: A process for forming a semiconductor device having an oxide beanie structure (an oxide cap overhanging an underlying portion of the device). An oxide layer is first provided covering that portion, with the layer having a top surface and a side surface. The top and side surfaces are then exposed to an oxide deposition bath, thereby causing deposition of oxide on those surfaces. Deposition of oxide on the top surface causes growth of the cap layer in a vertical direction and deposition of oxide on the side surface causes growth of the cap layer in a horizontal direction, thereby forming the beanie structure.
    Type: Grant
    Filed: January 25, 2005
    Date of Patent: August 14, 2007
    Assignee: International Business Machines Corporation
    Inventors: Steven J. Holmes, Toshiharu Furukawa, Mark C. Hakey, David V. Horak, Charles W. Koburger, III, Larry A. Nesbit
  • Patent number: 7250347
    Abstract: A method for forming transistors with mutually-aligned double gates. The method includes the steps of (a) providing a wrap-around-gate transistor structure, wherein the wrap-around-gate transistor structure includes (i) semiconductor region, and (ii) a gate electrode region wrapping around the semiconductor region, wherein the gate electrode region is electrically insulated from the semiconductor region by a gate dielectric film; and (b) removing first and second portions of the wrap-around-gate transistor structure so as to form top and bottom gate electrodes from the gate electrode region, wherein the top and bottom gate electrodes are electrically disconnected from each other.
    Type: Grant
    Filed: January 28, 2005
    Date of Patent: July 31, 2007
    Assignee: International Business Machines Corporation
    Inventors: Toshiharu Furukawa, Mark C. Hakey, Steven J. Holmes, David V. Horak, Charles W. Koburger, III, Peter H. Mitchell, Larry A. Nesbit
  • Patent number: 7247877
    Abstract: A method and structure for an integrated circuit comprising a first transistor and an embedded carbon nanotube field effect transistor (CNT FET) proximate to the first transistor, wherein the CNT FET is dimensioned smaller than the first transistor. The CNT FET is adapted to sense signals from the first transistor, wherein the signals comprise any of temperature, voltage, current, electric field, and magnetic field signals. Moreover, the CNT FET is adapted to measure stress and strain in the integrated circuit, wherein the stress and strain comprise any of mechanical and thermal stress and strain. Additionally, the CNT FET is adapted to detect defective circuits within the integrated circuit.
    Type: Grant
    Filed: August 20, 2004
    Date of Patent: July 24, 2007
    Assignee: International Business Machines Corporation
    Inventors: Mark C. Hakey, Mark E. Masters, Leah M. P. Pastel, David P. Vallett
  • Patent number: 7233071
    Abstract: A low-k dielectric material for use in the manufacture of semiconductor devices, semiconductor structures using the low-k dielectric material, and methods of forming such dielectric materials and fabricating such structures. The low-k dielectric material comprises carbon nanostructures, like carbon nanotubes or carbon buckyballs, that are characterized by an insulating electronic state. The carbon nanostructures may be converted to the insulating electronic state either before or after a layer containing the carbon nanostructures is formed on a substrate. One approach for converting the carbon nanostructures to the insulating electronic state is fluorination.
    Type: Grant
    Filed: October 4, 2004
    Date of Patent: June 19, 2007
    Assignee: International Business Machines Corporation
    Inventors: Toshiharu Furukawa, Mark C. Hakey, Steven J. Holmes, David V. Horak, Charles W. Koburger, III
  • Patent number: 7229889
    Abstract: A method of metal plating a gate conductor on a semiconductor is provided. The method includes defining an organic polymer plating mandrel on the semiconductor, activating one or more sites of the organic polymer plating mandrel, and binding a seed layer to the one or more of the activated sites. A metallic conductive material can then be plated on the seed layer to form the gate conductor. Semiconductor devices having a gate conductor plated thereon to a width of between about 1 to about 7 nanometers are also provided.
    Type: Grant
    Filed: March 10, 2005
    Date of Patent: June 12, 2007
    Assignee: International Business Machines Corporation
    Inventors: Steven J. Holmes, Charles W. Koburger, III, David V. Horak, Toshiharu Furukawa, Mark C. Hakey
  • Patent number: 7230681
    Abstract: An apparatus for holding a wafer and a method for immersion lithography. The apparatus, including a wafer chuck having a central circular vacuum platen, an outer region, and a circular groove centered on the vacuum platen, a top surface of the vacuum platen recessed below a top surface of the outer region and a bottom surface of the groove recessed below the top surface of the vacuum platen; one or more suction ports in the bottom surface of the groove; and a hollow toroidal inflatable and deflatable bladder positioned within the groove.
    Type: Grant
    Filed: November 18, 2004
    Date of Patent: June 12, 2007
    Assignee: International Business Machines Corporation
    Inventors: Steven J. Holmes, Toshiharu Furukawa, Mark C. Hakey, Daniel A. Corliss, David V. Horak, Charles W. Koburger, III
  • Patent number: 7227233
    Abstract: A silicon-on-insulator (SOI) Read Only Memory (ROM), and a method of making the SOI ROM. ROM cells are located at the intersections of stripes in the surface SOI layer with orthogonally oriented wires on a conductor layer. Contacts from the wires connect to ROM cell diodes in the upper surface of the stripes. ROM cell personalization is the presence or absence of a diode and/or contact.
    Type: Grant
    Filed: September 12, 2005
    Date of Patent: June 5, 2007
    Assignee: International Business Machines Corporation
    Inventors: Toshiharu Furukawa, Mark C. Hakey, Steven J. Holmes, David V. Horak, Charles W. Koburger, III, Jack A. Mandelman
  • Patent number: 7176089
    Abstract: A method of manufacturing provides a vertical transistor particularly suitable for high density integration and which includes potentially independent gate structures on opposite sides of a semiconductor pillar formed by etching or epitaxial growth in a trench. The gate structure is surrounded by insulating material which is selectively etchable to isolation material surrounding the transistor. A contact is made to the lower end of the pillar (e.g. the transistor drain) by selectively etching the isolation material selective to the insulating material. The upper end of the pillar is covered by a cap and sidewalls of selectively etchable materials so that gate and source connection openings can also be made by selective etching with good registration tolerance. A dimension of the pillar in a direction parallel to the chip surface is defined by a distance between isolation regions and selective etching and height of the pillar is defined by thickness of a sacrificial layer.
    Type: Grant
    Filed: May 26, 2004
    Date of Patent: February 13, 2007
    Assignee: International Business Machines Corporation
    Inventors: Toshiharu Furukawa, Mark C. Hakey, Steven J. Holmes, David V. Horak, James M. Leas, William H-L Ma, Paul A. Rabidoux
  • Patent number: 7118997
    Abstract: A method for implanting gate regions essentially without implanting regions of the semiconductor layer where source/drain regions will be later formed. The method includes the steps of (a) providing (i) a semiconductor layer, (ii) a gate dielectric layer on the semiconductor layer, (iii) a gate region on the gate dielectric layer, wherein the gate region is electrically insulated from the semiconductor layer by the gate dielectric layer; (b) forming a resist layer on the gate dielectric layer and the gate region; (c) removing a cap portion of the resist layer essentially directly above the gate region essentially without removing the remainder of the resist layer; and (d) implanting the gate region essentially without implanting the semiconductor layer.
    Type: Grant
    Filed: January 28, 2005
    Date of Patent: October 10, 2006
    Assignee: International Business Machines Corporation
    Inventors: Toshiharu Furukawa, Mark C. Hakey, Steven J. Holmes, David V. Horak, Charles W. Koburger, III.
  • Patent number: 7089138
    Abstract: A diagnostic system and method for testing an integrated circuit during fabrication thereof. The diagnostic system has at least one integrated circuit chip that has an electrical signature associated with it; a sacrificial circuit that is adjacent to the integrated circuit chip and has a known electrical signature associated with it and intentionally mis-designed circuitry; and a comparator adapted to compare the electrical signature of the integrated circuit chip with the known electrical signature of the sacrificial circuit, wherein a match in the electrical signature of the integrated circuit chip with the known electrical signature of the sacrificial circuit indicates that the integrated circuit chip is mis-designed. The diagnostic system further includes a semiconductor wafer that has a plurality of integrated circuit chips and a kerf area separating one integrated circuit chip from another integrated circuit chip. A mis-designed integrated circuit chip has abnormally functioning circuitry.
    Type: Grant
    Filed: February 25, 2005
    Date of Patent: August 8, 2006
    Assignee: International Business Machines Corporation
    Inventors: Pierre J. Bouchard, Mark C. Hakey, Mark E. Masters, Leah M. P. Pastel, James A. Slinkman, David P. Vallett
  • Patent number: 7087531
    Abstract: A method and structure for forming a semiconductor structure. A semiconductor substrate is provided. A trench is formed within the semiconductor substrate. A first layer of electrically insulative material is formed within the trench. A first portion and a second portion of the first layer of electrically insulative material is removed. A second layer of electrically insulative material is selectively grown on the first layer comprising the removed first portion and the removed second portion.
    Type: Grant
    Filed: January 17, 2005
    Date of Patent: August 8, 2006
    Assignee: International Business Machines Corporation
    Inventors: Toshiharu Furukawa, Mark C. Hakey, Steven J. Holmes, David V. Horak, Charles W. Koburger, III
  • Patent number: 7071047
    Abstract: Semiconductor structures and method of forming semiconductor structures. The semiconductor structures including nano-structures or fabricated using nano-structures. The method of forming semiconductor structures including generating nano-structures using a nano-mask and performing additional semiconductor processing steps using the nano-structures generated.
    Type: Grant
    Filed: January 28, 2005
    Date of Patent: July 4, 2006
    Assignee: International Business Machines Corporation
    Inventors: Toshiharu Furukawa, Mark C. Hakey, Steven J. Holmes, David V. Horak, Charles W. Koburger, III
  • Patent number: 7026259
    Abstract: A liquid-filled balloon may be positioned between a workpiece, such as a semiconductor structure covered with a photoresist, and a lithography light source. The balloon includes a thin membrane that exhibits good optical and physical properties. Liquid contained in the balloon also exhibits good optical properties, including a refractive index higher than that of air. Light from the lithography light source passes through a mask, through a top layer of the balloon membrane, through the contained liquid, through a bottom layer of the balloon membrane, and onto the workpiece where it alters portions of the photoresist. As the liquid has a low absorption and a higher refractive index than air, the liquid-filled balloon system enhances resolution. Thus, the balloon provides optical benefits of liquid immersion without the complications of maintaining a liquid between (and in contact with) a lithographic light source mechanism and workpiece.
    Type: Grant
    Filed: January 21, 2004
    Date of Patent: April 11, 2006
    Assignee: International Business Machines Corporation
    Inventors: Mark C. Hakey, David V. Horak, Charles W. Koburger, III, Peter H. Mitchell
  • Patent number: 6998204
    Abstract: The invention provides a method of forming a phase shift mask and the resulting phase shift mask. The method forms a non-transparent film on a transparent substrate and patterns an etch stop layer on the non-transparent film. The invention patterns the non-transparent film using the etch stop layer to expose areas of the transparent substrate. Next, the invention forms a mask on the non-transparent film to protect selected areas of the transparent substrate and forms a phase shift oxide on exposed areas of the transparent substrate. Subsequently, the mask is removed and the phase shift oxide is polished down to the etch stop layer, after which the etch stop layer is removed.
    Type: Grant
    Filed: November 13, 2003
    Date of Patent: February 14, 2006
    Assignee: International Business Machines Corporation
    Inventors: Toshiharu Furukawa, Mark C. Hakey, Steven J. Holmes, David V. Horak, Charles W. Koburger, III, Peter H. Mitchell, Larry A. Nesbit
  • Patent number: 6995051
    Abstract: Etching methods and apparatus are disclosed for irradiation assisted reactive ion etching. One embodiment includes providing a substrate having a patterned mask thereon with an exposed area; forming an etch area in the substrate by implanting the exposed area of the substrate with a reactive species; and (laser) irradiating the etch area to volatilize the etch area. The methods modify etch conditions such that they approximate an ‘atomic layer etching’ process, in which thin layers of substrate are selectively and successively etched.
    Type: Grant
    Filed: October 28, 2004
    Date of Patent: February 7, 2006
    Assignee: International Business Machines Corporation
    Inventors: Toshiharu Furukawa, Mark C. Hakey, Steven J. Holmes, David V. Horak
  • Patent number: 6989323
    Abstract: A method for forming a gate structure for a semiconductor device includes defining a conductive sacrificial structure on a substrate, forming a reacted metal film on sidewalls of the conductive sacrificial structure, and removing unreacted portions of the conductive sacrificial structure.
    Type: Grant
    Filed: April 28, 2004
    Date of Patent: January 24, 2006
    Assignee: International Business Machines Corporation
    Inventors: Bruce B. Doris, Toshiharu Furukawa, Mark C. Hakey, Steven J. Holmes, David V. Horak, Charles W. Koburger, III
  • Patent number: 6963132
    Abstract: The present invention provides a method of forming an integrated semiconductor device, and the device so formed. An active surface of at least two semiconductor devices, such as semiconductor chips, are temporarily mounted onto an alignment substrate. A support substrate is affixed to a back surface of the devices using a conformable bonding material, wherein the bonding material accommodates devices having different dimensions. The alignment substrate is then removed leaving the devices wherein the active surface of the devices are co-planar.
    Type: Grant
    Filed: May 29, 2003
    Date of Patent: November 8, 2005
    Assignee: International Business Machines Corporation
    Inventors: Mark C. Hakey, Steven J. Holmes, David V. Horak, Harold G. Linde, Edmund J. Sprogis