Patents by Inventor Mark Charles Hakey
Mark Charles Hakey has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 7674674Abstract: A memory gain cell for a memory circuit, a memory circuit formed from multiple memory gain cells, and methods of fabricating such memory gain cells and memory circuits. The memory gain cell includes a storage device capable of holding a stored electrical charge, a write device, and a read device. The read device includes a fin of semiconducting material, electrically-isolated first and second gate electrodes flanking the fin, and a source and drain formed in the fin adjacent to the first and the second gate electrodes. The first gate electrode is electrically coupled with the storage device. The first and second gate electrodes are operative for gating a region of the fin defined between the source and the drain to thereby regulate a current flowing from the source to the drain. When gated, the magnitude of the current is dependent upon the electrical charge stored by the storage device.Type: GrantFiled: June 23, 2008Date of Patent: March 9, 2010Assignee: International Business Machines CorporationInventors: Toshiharu Furukawa, Mark Charles Hakey, David Vaclav Horak, Charles William Koburger, III, Mark Eliot Masters, Peter H. Mitchell
-
Patent number: 7668004Abstract: Non-volatile and radiation-hard switching and memory devices using vertical nano-tubes and reversibly held in state by van der Waals' forces and methods of fabricating the devices. Means for sensing the state of the devices include measuring capacitance, and tunneling and field emission currents.Type: GrantFiled: January 25, 2008Date of Patent: February 23, 2010Assignee: International Business Machines CorporationInventors: Toshiharu Furukawa, Mark Charles Hakey, Steven John Holmes, David Vaclav Horak, Charles William Koburger, III
-
Patent number: 7651902Abstract: Hybrid substrates characterized by semiconductor islands of different crystal orientations and methods of forming such hybrid substrates. The methods involve using a SIMOX process to form an insulating layer. The insulating layer may divide the islands of at least one of the different crystal orientations into mutually aligned device and body regions. The body regions may be electrically floating relative to the device regions.Type: GrantFiled: April 20, 2007Date of Patent: January 26, 2010Assignee: International Business Machines CorporationInventors: Ethan Harrison Cannon, Toshiharu Furukawa, John Gerard Gaudiello, Mark Charles Hakey, Steven John Holmes, David Vaclav Horak, Charles William Koburger, III, Jack Allan Mandelman, William Robert Tonti
-
Patent number: 7629192Abstract: Acceleration and voltage measurement devices and methods of fabricating acceleration and voltage measurement devices. The acceleration and voltage measurement devices including an electrically conductive plate on a top surface of a first insulating layer; a second insulating layer on a top surface of the conductive plate, the top surface of the plate exposed in an opening in the second insulating layer; conductive nanotubes suspended across the opening, and electrically conductive contacts to the nanotubes.Type: GrantFiled: October 13, 2005Date of Patent: December 8, 2009Assignee: International Business Machines CorporationInventors: Toshiharu Furukawa, Mark Charles Hakey, Steven John Holmes, David Vaclav Horak, Charles William Koburger, III, Leah Marie Pfeifer Pastel
-
Patent number: 7607455Abstract: Micro-valves and micro-pumps and methods of fabricating micro-valves and micro-pumps. The micro-valves and micro-pumps include electrically conductive diaphragms fabricated from electrically conductive nano-fibers. Fluid flow through the micro-valves and pumping action of the micro-pumps is accomplished by applying electrostatic forces to the electrically conductive diaphragms.Type: GrantFiled: May 28, 2008Date of Patent: October 27, 2009Assignee: International Business Machines CorporationInventors: Toshiharu Furukawa, Mark Charles Hakey, Steven John Holmes, David Vaclav Horak, Charles William Koburger, III
-
Patent number: 7579272Abstract: Methods of forming low-k dielectric layers for use in the manufacture of semiconductor devices and fabricating semiconductor structures using the low-k dielectric material. The low-k dielectric material comprises carbon nanostructures, like carbon nanotubes or carbon buckyballs, that are characterized by an insulating electronic state. The carbon nanostructures may be converted to the insulating electronic state either before or after a layer containing the carbon nanostructures is formed on a substrate. One approach for converting the carbon nanostructures to the insulating electronic state is fluorination.Type: GrantFiled: February 2, 2007Date of Patent: August 25, 2009Assignee: International Business Machines CorporationInventors: Toshiharu Furukawa, Mark Charles Hakey, Steven John Holmes, David Vaclav Horak, Charles William Koburger, III
-
Patent number: 7566613Abstract: A memory gain cell for a memory circuit, a memory circuit formed from multiple memory gain cells, and methods of fabricating such memory gain cells and memory circuits. The memory gain cell includes a storage device capable of holding a stored electrical charge, a write device, and a read device. The read device includes a fin of semiconducting material, electrically-isolated first and second gate electrodes flanking the fin, and a source and drain formed in the fin adjacent to the first and the second gate electrodes. The first gate electrode is electrically coupled with the storage device. The first and second gate electrodes are operative for gating a region of the fin defined between the source and the drain to thereby regulate a current flowing from the source to the drain. When gated, the magnitude of the current is dependent upon the electrical charge stored by the storage device.Type: GrantFiled: September 7, 2005Date of Patent: July 28, 2009Assignee: International Business Machines CorporationInventors: Toshiharu Furukawa, Mark Charles Hakey, David Vaclav Horak, Charles William Koburger, III, Mark Eliot Masters, Peter H. Mitchell
-
Patent number: 7560347Abstract: A field effect transistor is formed having wrap-around, vertically-aligned, dual gate electrodes. Starting with a silicon-on-insulator (SOI) structure having a buried silicon island, a vertical reference edge is defined, by creating a cavity within the SOI structure, and used during two etch-back steps that can be reliably performed. The first etch-back removes a portion of an oxide layer for a first distance over which a gate conductor material is then applied. The second etch-back removes a portion of the gate conductor material for a second distance. The difference between the first and second distances defines the gate length of the eventual device. After stripping away the oxide layers, a vertical gate electrode is revealed that surrounds the buried silicon island on all four side surfaces.Type: GrantFiled: May 2, 2008Date of Patent: July 14, 2009Assignee: International Business Machines CorporationInventors: Toshiharu Furukawa, Mark Charles Hakey, David Vaclav Horak, Charles William Koburger, III, Peter H. Mitchell
-
Patent number: 7525156Abstract: To isolate two active regions formed on a silicon-on-insulator (SOI) substrate, a shallow trench isolation region is filled with liquid phase deposited silicon dioxide (LPD-SiO2) while avoiding covering the active areas with the oxide. By selectively depositing the oxide in this manner, the polishing needed to planarize the wafer is significantly reduced as compared to a chemical-vapor deposited oxide layer that covers the entire wafer surface. Additionally, the LPD-SiO2 does not include the growth seams that CVD silicon dioxide does. Accordingly, the etch rate of the LPD-SiO2 is uniform across its entire expanse thereby preventing cavities and other etching irregularities present in prior art shallow trench isolation regions in which the etch rate of growth seams exceeds that of the other oxide areas.Type: GrantFiled: June 8, 2007Date of Patent: April 28, 2009Assignee: International Business Machines CorporationInventors: Mark Charles Hakey, Steven John Holmes, David Vaclav Horak, Charles William Koburger, III, Peter H. Mitchell, Larry Alan Nesbit
-
Patent number: 7505110Abstract: Methods of fabricating micro-valves and micro-pumps. The micro-valves and micro-pumps that are fabricated include electrically conductive diaphragms fabricated from electrically conductive nano-fibers. Fluid flow through the micro-valves and pumping action of the micro-pumps is accomplished by applying electrostatic forces to the electrically conductive diaphragms.Type: GrantFiled: March 14, 2006Date of Patent: March 17, 2009Assignee: International Business Machines CorporationInventors: Toshiharu Furukawa, Mark Charles Hakey, Steven John Holmes, David Vaclav Horak, Charles William Koburger, III
-
Patent number: 7492046Abstract: A fuse structure and a method for operating the same. The fuse structure operating method includes providing a structure. The structure includes (a) an electrically conductive layer and (b) N electrically conductive regions hanging over without touching the electrically conductive layer. N is a positive integer and N is greater than 1. The N electrically conductive regions are electrically connected together. The structure operating method further includes causing a first electrically conductive region of the N electrically conductive regions to touch the electrically conductive layer without causing the remaining N?1 electrically conductive regions to touch the electrically conductive layer.Type: GrantFiled: April 21, 2006Date of Patent: February 17, 2009Assignee: International Business Machines CorporationInventors: Toshiharu Furukawa, Mark Charles Hakey, Steven John Holmes, David Vaclav Horak, Charles William Koburger, III
-
Publication number: 20090035708Abstract: A structure and a method for forming the same. The method includes providing a structure which includes (a) a to-be-patterned layer, (b) a photoresist layer on top of the to-be-patterned layer wherein the photoresist layer includes a first opening, and (c) a cap region on side walls of the first opening. A first top surface of the to-be-patterned layer is exposed to a surrounding ambient through the first opening. The method further includes performing a first lithography process resulting in a second opening in the photoresist layer. The second opening is different from the first opening. A second top surface of the to-be-patterned layer is exposed to a surrounding ambient through the second opening.Type: ApplicationFiled: July 31, 2007Publication date: February 5, 2009Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATIONInventors: Toshiharu Furukawa, Mark Charles Hakey, Steven John Holmes, David Vaclav Horak, Charles William Koburger, III
-
Patent number: 7483285Abstract: Structures for memory devices. The structure includes (a) a substrate; (b) a first and second electrode regions on the substrate; and (c) a third electrode region disposed between the first and second electrode regions. In response to a first write voltage potential applied between the first and third electrode regions, the third electrode region changes its own shape, such that in response to a pre-specified read voltage potential subsequently applied between the first and third electrode regions, a sensing current flows between the first and third electrode regions. In addition, in response to a second write voltage potential being applied between the second and third electrode regions, the third electrode region changes its own shape such that in response to the pre-specified read voltage potential applied between the first and third electrode regions, said sensing current does not flow between the first and third electrode regions.Type: GrantFiled: January 24, 2008Date of Patent: January 27, 2009Assignee: International Business Machines CorporationInventors: Toshiharu Furukawa, Mark Charles Hakey, Steven John Holmes, David Vaclav Horak, Charles William Koburger, III
-
Patent number: 7473633Abstract: Conductive paths in an integrated circuit are formed using multiple undifferentiated carbon nanotubes embedded in a conductive metal, which is preferably copper. Preferably, conductive paths include vias running between conductive layers. Preferably, composite vias are formed by forming a metal catalyst pad on a conductor at the via site, depositing and etching a dielectric layer to form a cavity, growing substantially parallel carbon nanotubes on the catalyst in the cavity, and filling the remaining voids in the cavity with copper. The next conductive layer is then formed over the via hole.Type: GrantFiled: July 20, 2006Date of Patent: January 6, 2009Assignee: International Business Machines CorporationInventors: Toshiharu Furukawa, Mark Charles Hakey, David Vaclav Horak, Charles William Koburger, III, Mark Eliot Masters, Peter H Mitchell, Stanislav Polonsky
-
Publication number: 20090001337Abstract: A memory cell in an integrated circuit is fabricated in part by forming a lower electrode feature, an island, a sacrificial feature, a gate feature, and a phase change feature. The island is formed on the lower electrode feature and has one or more sidewalls. It comprises a lower doped feature, a middle doped feature formed above the lower doped feature, and an upper doped feature formed above the middle doped feature. The sacrificial feature is formed above the island, while the gate feature is formed along each sidewall of the island. The gate feature overlies at least a portion of the middle doped feature of the island and is operative to control an electrical resistance therein. Finally, the phase feature is formed above the island at least in part by replacing at least a portion of the sacrificial feature with a phase change material. The phase change material is operative to switch between lower and higher electrical resistance states in response to an application of an electrical signal.Type: ApplicationFiled: June 29, 2007Publication date: January 1, 2009Inventors: Toshiharu Furukawa, John G. Gaudiello, Mark Charles Hakey, Steven J. Holmes, David V. Horak, Charles William Koburger, III, Chung Hon Lam
-
Publication number: 20080258246Abstract: Acceleration and voltage measurement devices and methods of fabricating acceleration and voltage measurement devices. The acceleration and voltage measurement devices including an electrically conductive plate on a top surface of a first insulating layer; a second insulating layer on a top surface of the conductive plate, the top surface of the plate exposed in an opening in the second insulating layer; conductive nanotubes suspended across the opening, and electrically conductive contacts to said nanotubes.Type: ApplicationFiled: July 2, 2008Publication date: October 23, 2008Inventors: Toshiharu Furukawa, Mark Charles Hakey, Steven John Holmes, David Vaclav Horak, Charles William Koburger, Leah Marie Pfeifer Pastel
-
Publication number: 20080261363Abstract: A memory gain cell for a memory circuit, a memory circuit formed from multiple memory gain cells, and methods of fabricating such memory gain cells and memory circuits. The memory gain cell includes a storage device capable of holding a stored electrical charge, a write device, and a read device. The read device includes a fin of semiconducting material, electrically-isolated first and second gate electrodes flanking the fin, and a source and drain formed in the fin adjacent to the first and the second gate electrodes. The first gate electrode is electrically coupled with the storage device. The first and second gate electrodes are operative for gating a region of the fin defined between the source and the drain to thereby regulate a current flowing from the source to the drain. When gated, the magnitude of the current is dependent upon the electrical charge stored by the storage device.Type: ApplicationFiled: June 23, 2008Publication date: October 23, 2008Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATIONInventors: Toshiharu Furukawa, Mark Charles Hakey, David Vaclav Horak, Charles William Koburger, Mark Eliot Masters, Peter H. Mitchell
-
Publication number: 20080258222Abstract: Design structure embodied in a machine readable medium for designing, manufacturing, or testing a design in which the design structure includes devices formed in a hybrid substrate characterized by semiconductor islands of different crystal orientations. An insulating layer divides the islands of at least one of the different crystal orientations into mutually aligned device and body regions. The body regions may be electrically floating relative to the device regions.Type: ApplicationFiled: October 24, 2007Publication date: October 23, 2008Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATIONInventors: Ethan Harrison Cannon, Toshiharu Furukawa, John Gerard Gaudiello, Mark Charles Hakey, Steven John Holmes, David Vaclav Horak, Charles William Koburger, Jack Allan Mandelman, William Robert Tonti
-
Publication number: 20080258181Abstract: Hybrid substrates characterized by semiconductor islands of different crystal orientations and methods of forming such hybrid substrates. The methods involve using a SIMOX process to form an insulating layer. The insulating layer may divide the islands of at least one of the different crystal orientations into mutually aligned device and body regions. The body regions may be electrically floating relative to the device regions.Type: ApplicationFiled: April 20, 2007Publication date: October 23, 2008Inventors: Ethan Harrison Cannon, Toshiharu Furukawa, John Gerard Gaudiello, Mark Charles Hakey, Steven John Holmes, David Vaclav Horak, Charles William Koburger, Jack Allan Mandelman, William Robert Tonti
-
Patent number: 7439081Abstract: A conductive layer in an integrated circuit is formed as a sandwich having multiple sublayers, including at least one sublayer of oriented carbon nanotubes. The conductive layer sandwich preferably contains two sublayers of carbon nanotubes, in which the carbon nanotube orientation in one sublayer is substantially perpendicular to that of the other layer. The conductive layer sandwich preferably contains one or more additional sublayers of a conductive material, such as a metal. In one embodiment, oriented carbon nanotubes are created by forming a series of parallel surface ridges, covering the top and one side of the ridges with a catalyst inhibitor, and growing carbon nanotubes horizontally from the uncovered vertical sides of the ridges. In another embodiment, oriented carbon nanotubes are grown on the surface of a conductive material in the presence of a directional flow of reactant gases and a catalyst.Type: GrantFiled: October 25, 2006Date of Patent: October 21, 2008Assignee: International Business Machines CorporationInventors: Toshiharu Furukawa, Mark Charles Hakey, Steven John Holmes, David Vaclav Horak, Charles William Koburger III, Peter H. Mitchell