Patents by Inventor Mark E. Tuttle

Mark E. Tuttle has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6458234
    Abstract: Methods of fixturing a flexible circuit substrate to a processing carrier are disclosed. In one implementation, the flexible circuit substrate and, processing carrier are attached with an adhesive film provided therebetween. The adhesive film comprises acrylic, silicone or a silicone acrylic blend in a preferred embodiment of the present invention. Ideally, substantially the total surface area of a first surface of the flexible circuit substrate is attached to the processing carrier. The flexible circuit substrate is removed from the adhesive film following processing thereof. In a preferred embodiment of the present invention, the adhesive film is monolithic. An electrical component is attached to the flexible circuit substrate and the flexible circuit substrate is encapsulated in accordance with one implementation of the present invention.
    Type: Grant
    Filed: October 19, 1999
    Date of Patent: October 1, 2002
    Assignee: Micron Technology, Inc.
    Inventors: Rickie C. Lake, Mark E. Tuttle, Joseph P. Mousseau, Clay L. Cirino
  • Patent number: 6417561
    Abstract: A magnetic memory device, preferably a magnetic random access memory (MRAM) and method for forming same are described wherein a bit region sensitive to magnetic fields and preferably comprising a tunneling magnetoresistance (TMR) structure is located between a top electrode with a magnetic keeper and a bottom electrode with a magnetic keeper. The top electrode is preferably made of copper using a damascene process. The magnetic keeper of the top electrode includes at least a magnetic material layer (e.g., Co—Fe) but in the illustrated embodiments also includes one or more barrier layer (e.g., Ta). Various embodiments describe structures wherein the magnetic keeper stack is in contact with one, two or three surfaces of the top electrode, which face outward from the device.
    Type: Grant
    Filed: July 27, 2001
    Date of Patent: July 9, 2002
    Assignee: Micron Technology, Inc.
    Inventor: Mark E. Tuttle
  • Patent number: 6413788
    Abstract: A magnetic memory device, preferably a magnetic random access memory (MRAM) and method for forming same are described wherein a bit region sensitive to magnetic fields and preferably comprising a tunneling magnetoresistance (TMR) structure is located between a top electrode with a magnetic keeper and a bottom electrode with a magnetic keeper. The top electrode is preferably made of copper using a damascene process. The magnetic keeper of the top electrode includes at least a magnetic laterial layer (e.g., Co—Fe) but in the illustrated embodiments also includes one or more barrier layer (e.g., Ta). Various embodiments describe structures wherein the magnetic keeper stack is in contact with one, two or three surfaces of the top electrode, which face outward from the device.
    Type: Grant
    Filed: February 28, 2001
    Date of Patent: July 2, 2002
    Assignee: Micron Technology, Inc.
    Inventor: Mark E. Tuttle
  • Publication number: 20020075184
    Abstract: The present invention provides electronic communication devices, methods of forming electrical communication devices, and communications methods. An electronic communication device adapted to receive electronic signals includes: a housing comprising a substrate and an encapsulant; an integrated circuit provided within the housing and comprising transponder circuitry operable to communicate an identification signal responsive to receiving a polling signal; an antenna provided within the housing and being coupled with the transponder circuitry; and a ground plane provided within the housing and being spaced from the antenna and configured to shield some of the electronic signals from the antenna and reflect others of the electronic signals towards the antenna.
    Type: Application
    Filed: November 20, 2001
    Publication date: June 20, 2002
    Inventor: Mark E. Tuttle
  • Patent number: 6392545
    Abstract: The invention encompasses an electrical apparatus. Such apparatus comprises a first substrate having first circuitry thereon. The first circuitry has a terminal extending therefrom, and the terminal defines a first electrical node. The apparatus further comprises a first dielectric material covering a predominate portion of the first circuitry and not covering the first electrical node. Additionally, the apparatus comprises a second substrate having second circuitry thereon. The second circuitry has a terminal extending therefrom, and such terminal defines a second electrical node. A second dielectric material covers a predominate portion of the second circuitry, but does not cover the second electrical node. The second substrate comprises a different material than the first substrate. A portion of the second substrate is over a portion of the first substrate to define an overlap between the first and second substrates.
    Type: Grant
    Filed: December 7, 2000
    Date of Patent: May 21, 2002
    Assignee: Micron Technology, Inc.
    Inventors: Rickie C. Lake, Mark E. Tuttle
  • Publication number: 20020058404
    Abstract: Methods of forming electrically conductive interconnections and electrically interconnected substrates are described. In one implementation, a first substrate having an outer surface is provided and a layer of material is formed thereover. Openings are formed within the layer of material and conductive masses are formed within the openings. A second substrate having conductive interconnect surfaces is provided. The conductive interconnect surfaces are then contacted with the conductive masses and deformed thereby. In one aspect, the interconnect surfaces are deformed in part by portions of the layer of material proximate the conductive masses. In another aspect, the layer of material is removed and the interconnect surfaces are deformed by the conductive masses themselves.
    Type: Application
    Filed: February 29, 2000
    Publication date: May 16, 2002
    Inventors: Curtis M Medlen, Mark E Tuttle
  • Patent number: 6384648
    Abstract: A radio frequency identification device comprises an integrated circuit including a receiver, a transmitter, and a microprocessor. The receiver and transmitter together define an active transponder. The integrated circuit is preferably a monolithic single die integrated circuit including the receiver, the transmitter, and the microprocessor. Because the device includes an active transponder, instead of a transponder which relies on magnetic coupling for power, the device has a much greater range.
    Type: Grant
    Filed: April 14, 2000
    Date of Patent: May 7, 2002
    Assignee: Micron Technology, Inc.
    Inventors: James E. O'Toole, John R. Tuttle, Mark E. Tuttle, Tyler Lowrey, Kevin M. Devereaux, George E. Pax, Brian P. Higgins, David K. Ovard, Shu-Sun Yu, Robert R. Rotzoll
  • Patent number: 6380845
    Abstract: A wireless identification device including a housing; circuitry in the housing configured to provide a signal to identify the device in response to an interrogation signal; and a selectively actuated switch supported by the housing and permitting operation of the circuitry only while the switch is actuated. A method of manufacturing a wireless identification device, the method including configuring circuitry to provide, a signal to identify the device in response to an interrogation signal; coupling the circuitry to a selectively actuated switch, such that the circuitry provides the signal only while the switch is actuated; and encasing the circuitry in a housing such that the switch is actuable from outside the housing by touching a portion of the housing.
    Type: Grant
    Filed: January 20, 2000
    Date of Patent: April 30, 2002
    Assignee: Micron Technology, Inc.
    Inventor: Mark E. Tuttle
  • Patent number: 6375780
    Abstract: The present invention teaches a method of manufacturing an enclosed transceiver, such as a radio frequency identification (“RFID”) tag. Structurally, in one embodiment, the tag comprises an integrated circuit (IC) chip, and an RF antenna mounted on a thin film substrate powered by a thin film battery. A variety of antenna geometries are compatible with the above tag construction. These include monopole antennas, dipole antennas, dual dipole antennas, a combination of dipole and loop antennas. Further, in another embodiment, the antennas are positioned either within the plane of the thin film battery or superjacent to the thin film battery.
    Type: Grant
    Filed: April 4, 2000
    Date of Patent: April 23, 2002
    Assignee: Micron Technology, Inc.
    Inventors: Mark E. Tuttle, John R. Tuttle, Rickie C. Lake
  • Patent number: 6373391
    Abstract: In one aspect, the invention includes a device for sensing a change in an environment proximate the device. The device comprises a planar loop of conductive material extending along a first plane. The conductive material comprises two ends and the loop is configured to be broken upon the change in the environment. The device further comprises a pair of prongs. A first of the pair of prongs extends from one of the two ends of the conductive material and a second of the pair of prongs extends from an other of the two ends of the conductive material. The first and second prongs extend along the first plane. Additionally, the device comprises a circuit support having circuitry supported thereby and a pair of orifices extending therethrough. The prongs extend through the orifices to electrically connect. the circuitry supported by the circuit support to the planar loop of material. In another aspect, the invention includes a device for sensing termites.
    Type: Grant
    Filed: August 12, 1999
    Date of Patent: April 16, 2002
    Assignee: Micron Technology, Inc.
    Inventors: Rickie C. Lake, Mark E. Tuttle, Ross S. Dando
  • Patent number: 6359561
    Abstract: A method of manufacturing and testing an electronic circuit, the method comprising forming a plurality of conductive traces on a substrate and providing a gap in one of the conductive traces; attaching a circuit component to the substrate and coupling the circuit component to at least one of the conductive traces; supporting a battery on the substrate, and coupling the battery to at least one of the conductive traces, wherein a completed circuit would be defined, including the traces, circuit component, and battery, but for the gap; verifying electrical connections by performing an in circuit test, after the circuit component is attached and the battery is supported; and employing a jumper to electrically close the gap, and complete the circuit, after verifying electrical connections.
    Type: Grant
    Filed: January 22, 2001
    Date of Patent: March 19, 2002
    Assignee: Micron Technology, Inc.
    Inventors: Mark E. Tuttle, Rickie C. Lake, Curtis M. Medlen
  • Patent number: 6357025
    Abstract: A testing system evaluates one or more integrated circuit chips using RF communication. The system includes an interrogator unit with a radio communication range, and an IC chip adapted with RF circuitry positioned remotely from the interrogator unit, but within the radio communication range. The interrogator unit transmits a power signal to energize the IC chip during test procedures, and interrogating information for evaluating the operation of the IC chip. Test results are transmitted by the IC chip back to the interrogator unit for examination to determine whether the IC chip has a defect. In this is manner, one or more IC chips can be evaluated simultaneously without physically contacting each individual chip.
    Type: Grant
    Filed: September 28, 2000
    Date of Patent: March 12, 2002
    Assignee: Micron Technology, Inc.
    Inventor: Mark E. Tuttle
  • Patent number: 6351190
    Abstract: A stage for a voltage controlled oscillator includes a first p-channel transistor having a gate defining a control node, having a source adapted to be coupled to a supply voltage, and having a drain; a second p-channel transistor having a gate coupled to the control node, having a source coupled to the supply voltage, and having a drain; a first n-channel transistor having a gate defining a first input, having a drain coupled to the drain of the first p-channel transistor and defining a first node, and having a source; a second n-channel transistor having a gate defining a second input, having a drain coupled to the drain of the second p-channel transistor and defining a second node, and having a source; a current draw; first and second loads; a first source follower having an input coupled to the first node; and a second source follower.
    Type: Grant
    Filed: May 9, 2000
    Date of Patent: February 26, 2002
    Assignee: Micron Technology, Inc.
    Inventors: James E. O'Toole, John R. Tuttle, Mark E. Tuttle, Tyler Lowrey, Kevin M. Devereaux, George E. Pax, Brian P. Higgins, Shu-Sun Yu, David K. Ovard, Robert R. Rotzoll
  • Patent number: 6344792
    Abstract: A method of manufacturing and testing an electronic circuit, the method comprising forming a plurality of conductive traces on a substrate and providing a gap in one of the conductive traces; attaching a circuit component to the substrate and coupling the circuit component to at least one of the conductive traces; supporting a battery on the substrate, and coupling the battery to at least one of the conductive traces, wherein a completed circuit would be defined, including the traces, circuit component, and battery, but for the gap; verifying electrical connections by performing an in circuit test, after the circuit component is attached and the battery is supported; and employing a jumper to electrically close the gap, and complete the circuit, after verifying electrical connections.
    Type: Grant
    Filed: July 17, 2000
    Date of Patent: February 5, 2002
    Assignee: Micron Technology, Inc.
    Inventors: Mark E. Tuttle, Rickie C. Lake, Curtis M. Medlen
  • Patent number: 6339385
    Abstract: Electronic communication devices, methods of forming electrical communication devices, and communications methods are provided. An electronic communication device adapted to receive electronic signals includes: a housing having a substrate and an encapsulant; an integrated circuit provided within the housing and having comprising transponder circuitry operable to communicate an identification signal responsive to receiving a polling signal; an antenna provided within the housing and being coupled with the transponder circuitry; and a ground plane provided within the housing and being spaced from the antenna and configured to shield some of the electronic signals from the antenna and reflect others of the electronic signals towards the antenna.
    Type: Grant
    Filed: August 20, 1997
    Date of Patent: January 15, 2002
    Assignee: Micron Technology, Inc.
    Inventor: Mark E. Tuttle
  • Patent number: 6337634
    Abstract: A radio frequency identification device comprises an integrated circuit including a receiver, a transmitter, and a microprocessor. The receiver and transmitter together define an active transponder. The integrated circuit is preferably a monolithic single die integrated circuit including the receiver, the transmitter, and the microprocessor. Because the device includes an active transponder, instead of a transponder which relies on magnetic coupling for power, the device has a much greater range.
    Type: Grant
    Filed: September 10, 1998
    Date of Patent: January 8, 2002
    Assignee: Micron Technology, Inc.
    Inventors: James E. O'Toole, John R. Tuttle, Mark E. Tuttle, Tyler Lowrey, Kevin M. Devereaux, George E. Pax, Brian P. Higgins, David K. Ovard, Shu-Sun Yu, Robert R. Rotzoll
  • Publication number: 20010050580
    Abstract: A radio frequency identification device comprises an integrated circuit including a receiver, a transmitter, and a microprocessor. The receiver and transmitter together define an active transponder. The integrated circuit is preferably a monolithic single die integrated circuit including the receiver, the transmitter, and the microprocessor. Because the device includes an active transponder, instead of a transponder which relies on magnetic coupling for power, the device has a much greater range.
    Type: Application
    Filed: April 3, 2000
    Publication date: December 13, 2001
    Inventors: James E. O'Toole, John R. Tuttle, Mark E. Tuttle, Tyler Lowrey, Kevin M. Devereaux, George E. Pax, Brian P. Higgins, David K. Ovard, Shu-Sun Yu, Robert R. Rotzoll
  • Patent number: 6329213
    Abstract: The invention includes methods for forming integrated circuits within substrates, and embedded circuits. In one aspect, the invention includes a method of forming an integrated circuit within a substrate comprising: a) providing a recess in a substrate; b) printing an antenna within the recess; and c) providing an integrated circuit chip and a battery in electrical connection with the antenna.
    Type: Grant
    Filed: May 1, 1997
    Date of Patent: December 11, 2001
    Assignee: Micron Technology, Inc.
    Inventors: Mark E. Tuttle, Rickie C. Lake
  • Patent number: 6325294
    Abstract: The present invention teaches a method of manufacturing an enclosed transceiver, such as a radio frequency identification (“RFID”) tag. Structurally, in one embodiment, the tag comprises an integrated circuit (IC) chip, and an RF antenna mounted on a thin film substrate powered by a thin film battery. A variety of antenna geometries are compatible with the above tag construction. These include monopole antennas, dipole antennas, dual dipole antennas, a combination of dipole and loop antennas. Further, in another embodiment, the antennas are positioned either within the plane of the thin film battery or superjacent to the thin firm batter.
    Type: Grant
    Filed: February 1, 2001
    Date of Patent: December 4, 2001
    Assignee: Micron Technology, Inc.
    Inventors: Mark E. Tuttle, John R. Tuttle, Rickie C. Lake
  • Publication number: 20010043141
    Abstract: A wireless identification device comprising a housing; circuitry in the housing configured to provide a signal to identify the device in response to an interrogation signal; and a selectively actuated switch supported by the housing and permitting operation of the circuitry only while the switch is actuated. A method of manufacturing a wireless identification device, the method comprising configuring circuitry to provide a signal to identify the device in response to an interrogation signal; coupling the circuitry to a selectively actuated switch, such that the circuitry provides the signal only while the switch is actuated; and encasing the circuitry in a housing such that the switch is actuable from outside the housing by touching a portion of the housing.
    Type: Application
    Filed: January 20, 2000
    Publication date: November 22, 2001
    Inventor: Mark E. Tuttle