Patents by Inventor Mark E. Tuttle

Mark E. Tuttle has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20040144997
    Abstract: A method of forming a magnetic tunnel junction memory element and the resulting structure are disclosed. A magnetic tunnel junction memory element comprising a thick nonmagnetic layer between two ferromagnetic layers. The thick nonmagnetic layer has an opening in which a thinner tunnel barrier layer is disposed. The resistance of a magnetic tunnel junction memory element may be controlled by adjusting the surface area and/or thickness of the tunnel barrier layer without regard to the surface area of the ferromagnetic layers.
    Type: Application
    Filed: January 20, 2004
    Publication date: July 29, 2004
    Inventor: Mark E. Tuttle
  • Patent number: 6768415
    Abstract: A wireless identification device including a housing; circuitry in the housing configured to provide a signal to identify the device in response to an interrogation signal; and a selectively actuated switch supported by the housing and controlling whether the circuitry identifies the device. A method of manufacturing a wireless identification device, the method comprising configuring circuitry to provide a signal to identify the device in response to an interrogation signal; coupling the circuitry to, a push-on/push-off switch supported by the housing and controlling whether the circuitry provides the signal to identify the device; and encasing the circuitry in a housing such that the switch is actuable from outside the housing by touching a portion of the housing.
    Type: Grant
    Filed: October 3, 1997
    Date of Patent: July 27, 2004
    Assignee: Micron Technology, Inc.
    Inventor: Mark E. Tuttle
  • Publication number: 20040119095
    Abstract: Structures and methods for providing magnetic shielding for integrated circuits are disclosed. The shielding comprises a foil or sheet of magnetically permeable material applied to an outer surface of a molded (e.g., epoxy) integrated circuit package. The foil can be held in place by adhesive or by mechanical means. The thickness of the shielding can be tailored to a customer's specific needs, and can be applied after all high temperature processing, such that a degaussed shield can be provided despite use of strong magnetic fields during high temperature processing, which fields are employed to maintain pinned magnetic layers within the integrated circuit.
    Type: Application
    Filed: November 21, 2003
    Publication date: June 24, 2004
    Inventors: Mark E. Tuttle, James G. Deak
  • Patent number: 6751149
    Abstract: An MRAM device having a plurality of MRAM cells formed of a fixed magnetic layer, a second soft magnetic layer and a dielectric layer interposed between the fixed magnetic layer and the soft magnetic layer. The MRAM cells are all formed simultaneously and at least some of the MRAM cells are designed to function as antifuse devices whereby the application of a selected electrical potential can short the antifuse device to thereby affect the functionality of the MRAM device.
    Type: Grant
    Filed: August 20, 2002
    Date of Patent: June 15, 2004
    Assignee: Micron Technology, Inc.
    Inventors: Mirmajid Seyyedy, Mark E. Tuttle, Glen E. Hush
  • Publication number: 20040106271
    Abstract: A method of forming integrated circuitry includes chemical vapor depositing a silicon carbide comprising layer over a substrate at a temperature of no greater than 500° C. Plasma etching is conducted through at least a portion of the silicon carbide comprising layer using a gas chemistry comprising oxygen and hydrogen. Semiconductor processing methods include the above in fabrication of contact openings and in fabrication of MRAM circuitry. Semiconductor processing methods also include fabrication of contact openings using resist and removing silicon carbide comprising material and resist in a common plasma etching step.
    Type: Application
    Filed: November 21, 2003
    Publication date: June 3, 2004
    Inventors: Li Li, Max F. Hineman, Mark E. Tuttle
  • Patent number: 6735183
    Abstract: A radio frequency identification device comprises an integrated circuit including a receiver, a transmitter, and a microprocessor. The receiver and transmitter together define an active transponder. The integrated circuit is preferably a monolithic single die integrated circuit including the receiver, the transmitter, and the microprocessor. Because the device includes an active transponder, instead of a transponder which relies on magnetic coupling for power, the device has a much greater range.
    Type: Grant
    Filed: May 2, 2000
    Date of Patent: May 11, 2004
    Assignee: Micron Technology, Inc.
    Inventors: James E. O'Toole, John R. Tuttle, Mark E. Tuttle, Tyler Lowrey, Kevin M. Devereaux, George E. Pax, Brian P. Higgins, David K. Ovard, Shu-Sun Yu, Robert R. Rotzoll
  • Publication number: 20040085190
    Abstract: An adjustable radio frequency data communications device has a monolithic semiconductor integrated circuit with integrated circuitry, interrogation receiving circuitry provided on the monolithic integrated circuit forming at least part of the integrated circuitry and configured to receive an interrogation signal from the interrogator unit, an antenna electrically coupled to the interrogation receiving circuitry and configured to communicate with the remote interrogator unit, a power source electrically coupled to the integrated circuitry and configured to generate operating power for the communications device, and at least one of the antenna and the interrogation receiving circuitry having reconfigurable electrical characteristics, the electrical characteristics being reconfigurable to selectively tune the at least one of the antenna and the interrogation receiving circuitry within a range of tuned and detuned states to realize a desired receiver sensitivity of the communications device.
    Type: Application
    Filed: October 28, 2003
    Publication date: May 6, 2004
    Inventors: Mark E. Tuttle, John R. Tuttle
  • Patent number: 6721289
    Abstract: A radio frequency identification device comprises an integrated circuit including a receiver, a transmitter, and a microprocessor. The receiver and transmitter together define an active transponder. The integrated circuit is preferably a monolithic single die integrated circuit including the receiver, the transmitter, and the microprocessor. Because the device includes an active transponder, instead of a transponder which relies on magnetic coupling for power, the device has a much greater range.
    Type: Grant
    Filed: February 11, 2000
    Date of Patent: April 13, 2004
    Assignee: Micron Technology, Inc.
    Inventors: James E. O'Toole, John R. Tuttle, Mark E. Tuttle, Tyler Lowrey, Kevin M. Devereaux, George E. Pax, Brian P. Higgins, David K. Ovard, Shu-Sun Yu, Robert R. Rotzoll
  • Publication number: 20040041184
    Abstract: This invention relates to MRAM technology and new MRAM memory element designs. Specifically, this invention relates to the use of ferromagnetic layers of different sizes in an MRAM element. This reduces magnetic coupling between a pinned layer and a sense layer and provides a more effective memory element.
    Type: Application
    Filed: July 14, 2003
    Publication date: March 4, 2004
    Inventors: Mark E. Tuttle, Joel A. Drewes
  • Publication number: 20040042261
    Abstract: The invention relates to magnetic memory elements and methods for forming the same. A magnetic memory element includes an etch stop layer disposed between a lower electrode and a magnetoresistive cell body or stack. The etch stop layer advantageously protects the lower electrode during patterning of the magnetoresistive cell body. The etch stop layer can be patterned with patterning of the magnetoresistive cell body. The etch stop layer can be formed from conductive materials or from resistive materials. When the etch stop layer is formed from resistive materials, the etch stop layer forms an in situ resistor that can isolate a failed memory cell from other memory cells in a corresponding array of cells, such as in an MRAM. This permits the MRAM to continue to utilize other magnetoresistive cells that are coupled to the electrodes in the event of a failure of the magnetoresistive cell.
    Type: Application
    Filed: August 29, 2002
    Publication date: March 4, 2004
    Applicant: Micron Technology, Inc.
    Inventor: Mark E. Tuttle
  • Publication number: 20040040628
    Abstract: A device for magnetically annealing magnetoresistive elements formed on wafers includes a heated chuck and a delivery mechanism for individually placing the wafers individually on the chuck one at a time. A coil is adjacent to the chuck and generates a magnetic field after the wafer is heated to a Néel temperature of an anti-ferromagnetic layer. A control system regulates the temperature of the heated chuck, the strength of the magnetic field, and a time period during which each chuck is heated to control the annealing process. The annealed elements are incorporated in the fabrication of magnetic memory devices.
    Type: Application
    Filed: August 28, 2002
    Publication date: March 4, 2004
    Inventors: Mark E. Tuttle, Ronald A. Weimer
  • Publication number: 20040041182
    Abstract: This invention relates to MRAM technology and new MRAM memory element designs. Specifically, this invention relates to the use of ferromagnetic layers of different sizes in an MRAM element. This reduces magnetic coupling between a pinned layer and a sense layer and provides a more effective memory element.
    Type: Application
    Filed: August 29, 2002
    Publication date: March 4, 2004
    Inventors: Mark E. Tuttle, Joel A. Drewes
  • Patent number: 6696879
    Abstract: A frequency doubler includes a first Gilbert cell, a second Gilbert cell coupled to the first Gilbert cell, a frequency generator configured to apply a first sinusoidal wave to the first Gilbert cell, and a phase shifter applying a sinusoidal wave shifted from the first sinusoidal wave to the second Gilbert cell. A method of doubling frequency without using a feedback loop includes providing a first Gilbert cell, providing a second Gilbert cell coupled to the first Gilbert cell, applying a first sinusoidal wave to the first Gilbert cell, and applying a sinusoidal wave shifted from the first sinusoidal wave to the second Gilbert cell.
    Type: Grant
    Filed: November 22, 2000
    Date of Patent: February 24, 2004
    Assignee: Micron Technology, Inc.
    Inventors: James E. O'Toole, John R. Tuttle, Mark E. Tuttle, Tyler Lowrey, Kevin M. Devereaux, George E. Pax, Brian P. Higgins, David K. Ovard, Shu-Sun Yu, Robert R. Rotzoll
  • Patent number: 6693513
    Abstract: A wireless identification device including a housing; circuitry in the housing configured to provide a signal to identify the device in response to an interrogation signal; and a selectively actuated switch supported by the housing and controlling whether the circuitry identifies the device. A method of manufacturing a wireless identification device, the method comprising configuring circuitry to provide a signal to identify the device in response to an interrogation signal; coupling the circuitry to a push-on/push-off switch supported by the housing and controlling whether the circuitry provides the signal to identify the device; and encasing the circuitry in a housing such that the switch is actuable from outside the housing by touching a portion of the housing.
    Type: Grant
    Filed: April 1, 2002
    Date of Patent: February 17, 2004
    Assignee: Micron Technology, Inc.
    Inventor: Mark E. Tuttle
  • Publication number: 20040029296
    Abstract: A method of forming a magneto-resistive memory element includes forming a groove in a layer of insulating material. A liner is formed conformably within the groove and the groove is filled with copper and then planarized. The electrically conductive material is provided an upper surface that is recessed relative to the upper surface of the layer of insulating material. A cap, which can be conductive (e.g., Ta) or resistive (e.g., TiAIN), is disposed over the electrically conductive material and within the groove. A surface of the cap that faces away from the electrically conductive material, is formed with an elevation substantially equal to that of the edge of the liner, or the cap can extend over the liner edge. At least one layer of magneto-resistive material is disposed over a portion of the cap. Advantageously, the cap can protect the copper line from harmful etch processes required for etching a MRAM stack, while keeping the structure planar after CMP.
    Type: Application
    Filed: August 7, 2002
    Publication date: February 12, 2004
    Inventor: Mark E. Tuttle
  • Publication number: 20030199167
    Abstract: A method of forming a magnetic tunnel junction memory element and the resulting structure are disclosed. A magnetic tunnel junction memory element comprising a thick nonmagnetic layer between two ferromagnetic layers. The thick nonmagnetic layer has an opening in which a thinner tunnel barrier layer is disposed. The resistance of a magnetic tunnel junction memory element may be controlled by adjusting the surface area and/or thickness of the tunnel barrier layer without regard to the surface area of the ferromagnetic layers.
    Type: Application
    Filed: April 12, 2002
    Publication date: October 23, 2003
    Inventor: Mark E. Tuttle
  • Publication number: 20030179601
    Abstract: An MRAM device having a plurality of MRAM cells formed of a fixed magnetic layer, a second soft magnetic layer and a dielectric layer interposed between the fixed magnetic layer and the soft magnetic layer. The MRAM cells are all formed simultaneously and at least some of the MRAM cells are designed to function as antifuse devices whereby the application of a selected electrical potential can short the antifuse device to thereby affect the functionality of the MRAM device.
    Type: Application
    Filed: August 20, 2002
    Publication date: September 25, 2003
    Inventors: Mirmajid Seyyedy, Mark E. Tuttle, Glen E. Hush
  • Patent number: 6600428
    Abstract: A radio frequency identification device comprises an integrated circuit including a receiver, a transmitter, and a microprocessor. The receiver and transmitter together define an active transponder. The integrated circuit is preferably a monolithic single die integrated circuit including the receiver, the transmitter, and the microprocessor. Because the device includes an active transponder, instead of a transponder which relies on magnetic coupling for power, the device has a much greater range.
    Type: Grant
    Filed: September 10, 1998
    Date of Patent: July 29, 2003
    Assignee: Micron Technology, Inc.
    Inventors: James E. O'Toole, John R. Tuttle, Mark E. Tuttle, Tyler Lowrey, Kevin M. Devereaux, George E. Pax, Brian P. Higgins, David K. Ovard, Shu-Sun Yu, Robert R. Rotzoll
  • Publication number: 20030132494
    Abstract: Structures and methods for providing magnetic shielding for integrated circuits are disclosed. The shielding comprises a foil or sheet of magnetically permeable material applied to an outer surface of a molded (e.g., epoxy) integrated circuit package. The foil can be held in place by adhesive or by mechanical means. The thickness of the shielding can be tailored to a customer's specific needs, and can be applied after all high temperature processing, such that a degaussed shield can be provided despite use of strong magnetic fields during high temperature processing, which fields are employed to maintain pinned magnetic layers within the integrated circuit.
    Type: Application
    Filed: January 15, 2002
    Publication date: July 17, 2003
    Inventors: Mark E. Tuttle, James G. Deak
  • Publication number: 20030134513
    Abstract: A method of forming integrated circuitry includes chemical vapor depositing a silicon carbide comprising layer over a substrate at a temperature of no greater than 500° C. Plasma etching is conducted through at least a portion of the silicon carbide comprising layer using a gas chemistry comprising oxygen and hydrogen. Semiconductor processing methods include the above in fabrication of contact openings and in fabrication of MRAM circuitry. Semiconductor processing methods also include fabrication of contact openings using resist and removing silicon carbide comprising material and resist in a common plasma etching step.
    Type: Application
    Filed: January 16, 2002
    Publication date: July 17, 2003
    Inventors: Li Li, Max F. Hineman, Mark E. Tuttle