Patents by Inventor Mark Hakey

Mark Hakey has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20080117671
    Abstract: Structures for memory devices. The structure includes (a) a substrate; (b) a first and second electrode regions on the substrate; and (c) a third electrode region disposed between the first and second electrode regions. In response to a first write voltage potential applied between the first and third electrode regions, the third electrode region changes its own shape, such that in response to a pre-specified read voltage potential subsequently applied between the first and third electrode regions, a sensing current flows between the first and third electrode regions. In addition, in response to a second write voltage potential being applied between the second and third electrode regions, the third electrode region changes its own shape such that in response to the pre-specified read voltage potential applied between the first and third electrode regions, said sensing current does not flow between the first and third electrode regions.
    Type: Application
    Filed: January 24, 2008
    Publication date: May 22, 2008
    Inventors: Toshiharu Furukawa, Mark Hakey, Steven Holmes, David Horak, Charles Koburger
  • Publication number: 20080044954
    Abstract: A method for forming carbon nanotube field effect transistors, arrays of carbon nanotube field effect transistors, and device structures and arrays of device structures formed by the methods. The methods include forming a stacked structure including a gate electrode layer and catalyst pads each coupled electrically with a source/drain contact. The gate electrode layer is divided into multiple gate electrodes and at least one semiconducting carbon nanotube is synthesized by a chemical vapor deposition process on each of the catalyst pads. The completed device structure includes a gate electrode with a sidewall covered by a gate dielectric and at least one semiconducting carbon nanotube adjacent to the sidewall of the gate electrode. Source/drain contacts are electrically coupled with opposite ends of the semiconducting carbon nanotube to complete the device structure. Multiple device structures may be configured either as a memory circuit or as a logic circuit.
    Type: Application
    Filed: October 29, 2007
    Publication date: February 21, 2008
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Toshiharu Furukawa, Mark Hakey, Steven Holmes, David Horak, Charles Koburger, Peter Mitchell, Larry Nesbit
  • Publication number: 20080042287
    Abstract: A conductive layer in an integrated circuit is formed as a sandwich having multiple sublayers, including at least one sublayer of oriented carbon nanotubes. The conductive layer sandwich preferably contains two sublayers of carbon nanotubes, in which the carbon nanotube orientation in one sublayer is substantially perpendicular to that of the other layer. The conductive layer sandwich preferably contains one or more additional sublayers of a conductive material, such as a metal. In one embodiment, oriented carbon nanotubes are created by forming a series of parallel surface ridges, covering the top and one side of the ridges with a catalyst inhibitor, and growing carbon nanotubes horizontally from the uncovered vertical sides of the ridges. In another embodiment, oriented carbon nanotubes are grown on the surface of a conductive material in the presence of a directional flow of reactant gases and a catalyst.
    Type: Application
    Filed: October 26, 2007
    Publication date: February 21, 2008
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Toshiharu Furukawa, Mark Hakey, Steven Holmes, David Horak, Charles Koburger, Peter Mitchell
  • Publication number: 20080040696
    Abstract: Design structure embodied in a machine readable medium for designing, manufacturing, or testing a design in which the design structure includes shallow trench isolation filled with liquid phase deposited silicon dioxide (LPD-SiO2). The shallow trench isolation region is used to isolate two active regions formed on a silicon-on-insulator (SOI) substrate. By selectively depositing the oxide so that the active areas are not covered with the oxide, the polishing needed to planarize the wafer is significantly reduced as compared to a chemical-vapor deposited oxide layer that covers the entire wafer surface. Additionally, the LPD-SiO2 does not include the growth seams that CVD silicon dioxide does. Accordingly, the etch rate of the LPD-SiO2 is uniform across its entire expanse thereby preventing cavities and other etching irregularities present in prior art shallow trench isolation regions in which the etch rate of growth seams exceeds that of the other oxide areas.
    Type: Application
    Filed: October 19, 2007
    Publication date: February 14, 2008
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Mark Hakey, Steven Holmes, David Horak, Charles Koburger, Peter Mitchell, Larry Nesbit
  • Publication number: 20080017932
    Abstract: A method and structure for forming a semiconductor structure. A semiconductor substrate is provided. A trench is formed within the semiconductor substrate. A first layer of electrically insulative material is formed within the trench. A first portion and a second portion of the first layer of electrically insulative material is removed. A second layer of electrically insulative material is selectively grown on the first layer comprising the removed first portion and the removed second portion.
    Type: Application
    Filed: October 3, 2007
    Publication date: January 24, 2008
    Inventors: Toshiharu Furukawa, Mark Hakey, Steven Holmes, David Horak, Charles Koburger
  • Publication number: 20070262450
    Abstract: A fuse structure and a method for operating the same. The fuse structure operating method includes providing a structure. The structure includes (a) an electrically conductive layer and (b) N electrically conductive regions hanging over without touching the electrically conductive layer. N is a positive integer and N is greater than 1. The N electrically conductive regions are electrically connected together. The structure operating method further includes causing a first electrically conductive region of the N electrically conductive regions to touch the electrically conductive layer without causing the remaining N?1 electrically conductive regions to touch the electrically conductive layer.
    Type: Application
    Filed: April 21, 2006
    Publication date: November 15, 2007
    Inventors: Toshiharu Furukawa, Mark Hakey, Steven Holmes, David Horak, Charles Koburger
  • Publication number: 20070241408
    Abstract: A well isolation trenches for a CMOS device and the method for forming the same. The CMOS device includes (a) a semiconductor substrate, (b) a P well and an N well in the semiconductor substrate, (c) a well isolation region sandwiched between and in direct physical contact with the P well and the N well. The P well comprises a first shallow trench isolation (STI) region, and the N well comprises a second STI region. A bottom surface of the well isolation region is at a lower level than bottom surfaces of the first and second STI regions. When going from top to bottom of the well isolation region, an area of a horizontal cross section of the well isolation region is an essentially continuous function.
    Type: Application
    Filed: June 8, 2007
    Publication date: October 18, 2007
    Inventors: Toshiharu Furukawa, Mark Hakey, David Horak, Charles Koburger, Jack Mandelman, William Tonti
  • Publication number: 20070235811
    Abstract: Disclosed are a semiconductor structure and a method that allow for simultaneous voltage/current conditioning of multiple memory elements in a nonvolatile memory device with multiple memory cells. The structure and method incorporate the use of a resistor connected in series with the memory elements to limit current passing through the memory elements. Specifically, the method and structure incorporate a blanket temporary series resistor on the wafer surface above the memory cells and/or permanent series resistors within the memory cells. During the conditioning process, these resistors protect the transition metal oxide in the individual memory elements from damage (i.e., burn-out), once it has been conditioned.
    Type: Application
    Filed: April 7, 2006
    Publication date: October 11, 2007
    Applicant: International Business Machines Corporation
    Inventors: Toshijaru Furukawa, Mark Hakey, Steven Holmes, David Horak, Charles Koburger, Chung Lam, Gerhard Meijer
  • Publication number: 20070228510
    Abstract: To isolate two active regions formed on a silicon-on-insulator (SOI) substrate, a shallow trench isolation region is filled with liquid phase deposited silicon dioxide (LPD-SiO2) while avoiding covering the active areas with the oxide. By selectively depositing the oxide in this manner, the polishing needed to planarize the wafer is significantly reduced as compared to a chemical-vapor deposited oxide layer that covers the entire wafer surface. Additionally, the LPD-SiO2 does not include the growth seams that CVD silicon dioxide does. Accordingly, the etch rate of the LPD-SiO2 is uniform across its entire expanse thereby preventing cavities and other etching irregularities present in prior art shallow trench isolation regions in which the etch rate of growth seams exceeds that of the other oxide areas.
    Type: Application
    Filed: June 8, 2007
    Publication date: October 4, 2007
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Mark Hakey, Steven Holmes, David Horak, Charles Koburger, Peter Mitchell, Larry Nesbit
  • Publication number: 20070228429
    Abstract: A method of fabricating a structure and fabricating related semiconductor transistors and novel semiconductor transistor structures. The method of fabricating the structure includes: providing a substrate having a top surface; forming an island on the top surface of the substrate, a top surface of the island parallel to the top surface of the substrate, a sidewall of the island extending between the top surface of the island and the top surface of the substrate; forming a plurality of carbon nanotubes on the sidewall of the island; and performing an ion implantation, the ion implantation penetrating into the island and blocked from penetrating into the substrate in regions of the substrate masked by the island and the carbon nanotubes.
    Type: Application
    Filed: June 4, 2007
    Publication date: October 4, 2007
    Inventors: Toshiharu Furukawa, Mark Hakey, Steven Holmes, David Horak, Charles Koburger
  • Publication number: 20070215874
    Abstract: An integrated circuit and method for fabrication includes first and second structures, each including a set of sub-lithographic lines, and contact landing segments connected to at least one of the sub-lithographic lines at an end portion. The first and second structures are nested such that the sub-lithographic lines are disposed in a parallel manner within a width, and the contact landing segments of the first structure are disposed on an opposite side of a length of the sub-lithographic lines relative to the contact landing segments of the second structure. The contact landing segments for the first and second structures are included within the width dimension, wherein the width includes a dimension four times a minimum feature size achievable by lithography.
    Type: Application
    Filed: March 17, 2006
    Publication date: September 20, 2007
    Inventors: Toshiharu Furukawa, Mark Hakey, Steven Holmes, David Horak, Charles Koburger, Chung Lam
  • Publication number: 20070215224
    Abstract: Micro-valves and micro-pumps and methods of fabricating micro-valves and micro-pumps. The micro-valves and micro-pumps include electrically conductive diaphragms fabricated from electrically conductive nano-fibers. Fluid flow through the micro-valves and pumping action of the micro-pumps is accomplished by applying electrostatic forces to the electrically conductive diaphragms.
    Type: Application
    Filed: March 14, 2006
    Publication date: September 20, 2007
    Inventors: Toshiharu Furukawa, Mark Hakey, Steven Holmes, David Horak, Charles Koburger
  • Publication number: 20070212810
    Abstract: Disclosed are non-volatile memory devices that incorporate a series of single or double memory cells. The single memory cells are essentially “U” shaped. The double memory cells comprise two essentially “U” shaped memory cells. Each memory cell comprises a memory element having a bi-stable layer sandwiched between two conductive layers. A temporary conductor may be applied to a series of cells and used to bulk condition the bi-stable layers of the cells. Also, due to the “U” shape of the cells, a cross point wire array may be used to connect a series of cells. The cross point wire array allows the memory elements of each cell to be individually identified and addressed for storing information and also allows for the information stored in the memory elements in all of the cells in the series to be simultaneously erased using a block erase process.
    Type: Application
    Filed: May 15, 2007
    Publication date: September 13, 2007
    Inventors: Toshijaru Furukawa, Mark Hakey, Steven Holmes, David Horak, Charles Koburger, Chung Lam, Gerhard Meijer
  • Publication number: 20070207604
    Abstract: Conductive sidewall spacer structures are formed using a method that patterns structures (mandrels) and activates the sidewalls of the structures. Metal ions are attached to the sidewalls of the structures and these metal ions are reduced to form seed material. The structures are then trimmed and the seed material is plated to form wiring on the sidewalls of the structures.
    Type: Application
    Filed: May 8, 2007
    Publication date: September 6, 2007
    Inventors: Toshiharu Furukawa, Mark Hakey, Steven Holmes, David Horak, Charles Koburger
  • Publication number: 20070197010
    Abstract: A method and structure for an integrated circuit comprising a first transistor and an embedded carbon nanotube field effect transistor (CNT FET) proximate to the first transistor, wherein the CNT FET is dimensioned smaller than the first transistor. The CNT FET is adapted to sense signals from the first transistor, wherein the signals comprise any of temperature, voltage, current, electric field, and magnetic field signals. Moreover, the CNT FET is adapted to measure stress and strain in the integrated circuit, wherein the stress and strain comprise any of mechanical and thermal stress and strain. Additionally, the CNT FET is adapted to detect defective circuits within the integrated circuit.
    Type: Application
    Filed: April 4, 2007
    Publication date: August 23, 2007
    Inventors: Mark Hakey, Mark Masters, Leah Pastel, David Vallett
  • Publication number: 20070194403
    Abstract: Semiconductor methods and device structures for suppressing latch-up in bulk CMOS devices. The method comprises forming a trench in the semiconductor material of the substrate with first sidewalls disposed between a pair of doped wells, also defined in the semiconductor material of the substrate. The method further comprises forming an etch mask in the trench to partially mask the base of the trench, followed by removing the semiconductor material of the substrate exposed across the partially masked base to define narrowed second sidewalls that deepen the trench. The deepened trench is filled with a dielectric material to define a trench isolation region for devices built in the doped wells. The dielectric material filling the deepened extension of the trench enhances latch-up suppression.
    Type: Application
    Filed: February 23, 2006
    Publication date: August 23, 2007
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Ethan Cannon, Toshiharu Furukawa, Mark Hakey, David Horak, Charles Koburger, Jimmy Kontos, Jack Mandelman, William Tonti
  • Publication number: 20070190713
    Abstract: A sidewall image transfer process for forming sub-lithographic structures employs a layer of sacrificial polymer containing silicon that is deposited over a gate conductor layer and covered by a cover layer. The sacrificial polymer layer is patterned with conventional resist and etched to form a sacrificial mandrel. The edges of the mandrel are oxidized or nitrided in a plasma at low temperature, after which the polymer and the cover layer are stripped, leaving sublithographic sidewalls. The sidewalls are used as hardmasks to etch sublithographic gate structures in the gate conductor layer.
    Type: Application
    Filed: February 16, 2006
    Publication date: August 16, 2007
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Bruce Doris, Toshiharu Furukawa, Mark Hakey, Steven Holmes, David Horak, Charles Koburger
  • Publication number: 20070184588
    Abstract: A field effect transistor is formed having wrap-around, vertically-aligned, dual gate electrodes. Starting with a silicon-on-insulator (SOI) structure having a buried silicon island, a vertical reference edge is defined, by creating a cavity within the SOI structure, and used during two etch-back steps that can be reliably performed. The first etch-back removes a portion of an oxide layer for a first distance over which a gate conductor material is then applied. The second etch-back removes a portion of the gate conductor material for a second distance. The difference between the first and second distances defines the gate length of the eventual device. After stripping away the oxide layers, a vertical gate electrode is revealed that surrounds the buried silicon island on all four side surfaces.
    Type: Application
    Filed: April 13, 2007
    Publication date: August 9, 2007
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Toshiharu Furukawa, Mark Hakey, David Horak, Charles Koburger, Peter Mitchell
  • Publication number: 20070184647
    Abstract: A dielectric in an integrated circuit is formed by creating oriented cylindrical voids in a conventional dielectric material. Preferably, voids are formed by first forming multiple relatively long, thin carbon nanotubes perpendicular to a surface of an integrated circuit wafer, depositing a conventional dielectric on the surface surrounding the carbon nanotubes, and then removing the carbon nanotubes to produce the voids. A layer of dielectric and voids thus formed can be patterned or otherwise processed using any of various conventional processes. Recesses formed in the dielectric for conductors are lined with a non-conformal dielectric film to seal the voids. The use of a conventional dielectric material having numerous air voids substantially reduces the dielectric constant, leaving a dielectric structure which is both structurally strong and can be constructed compatibly with conventional processes and materials.
    Type: Application
    Filed: April 16, 2007
    Publication date: August 9, 2007
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Toshiharu Furukawa, Mark Hakey, Steven Holmes, David Horak, Charles Koburger, Peter Mitchell
  • Publication number: 20070166981
    Abstract: Methods for fabricating a semiconductor device include forming a first layer on an underlying layer, forming a hardmask on the first layer, and patterning holes through the hardmask and first layer. An overhang is formed extending over sides of the holes. A conformal layer is deposited over the overhang and in the holes until the conformal layer closes off the holes to form a void/seam in each hole. The void/seam in each hole is exposed by etching back a top surface. The void/seam in each hole is extended to the underlying layer.
    Type: Application
    Filed: January 19, 2006
    Publication date: July 19, 2007
    Inventors: Toshiharu Furukawa, Mark Hakey, Steven Holmes, David Horak, Charles Koburger, Chung Lam