Patents by Inventor Mark S. Johnson

Mark S. Johnson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20100258939
    Abstract: Stacked microfeature devices and associated methods of manufacture are disclosed. A package in accordance with one embodiment includes first and second microfeature devices having corresponding first and second bond pad surfaces that face toward each other. First bond pads can be positioned at least proximate to the first bond pad surface and second bond pads can be positioned at least proximate to the second bond pad surface. A package connection site can provide electrical communication between the first microfeature device and components external to the package. A wirebond can be coupled between at least one of the first bond pads and the package connection site, and an electrically conductive link can be coupled between the first microfeature device and at least one of the second bond pads of the second microfeature device. Accordingly, the first microfeature device can form a portion of an electrical link to the second microfeature device.
    Type: Application
    Filed: June 22, 2010
    Publication date: October 14, 2010
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Mung Suan Heng, Kok Chua Tan, Vince Chan Seng Leong, Mark S. Johnson
  • Patent number: 7742313
    Abstract: Stacked microfeature devices and associated methods of manufacture are disclosed. A package in accordance with one embodiment includes first and second microfeature devices having corresponding first and second bond pad surfaces that face toward each other. First bond pads can be positioned at least proximate to the first bond pad surface and second bond pads can be positioned at least proximate to the second bond pad surface. A package connection site can provide electrical communication between the first microfeature device and components external to the package. A wirebond can be coupled between at least one of the first bond pads and the package connection site, and an electrically conductive link can be coupled between the first microfeature device and at least one of the second bond pads of the second microfeature device. Accordingly, the first microfeature device can form a portion of an electrical link to the second microfeature device.
    Type: Grant
    Filed: May 3, 2006
    Date of Patent: June 22, 2010
    Assignee: Micron Technology, Inc.
    Inventors: Mung Suan Heng, Kok Chua Tan, Vince Chan Seng Leong, Mark S. Johnson
  • Publication number: 20100044876
    Abstract: Methods for fabricating conductive structures on and/or in interposing devices and microfeature devices that are formed using such methods are disclosed herein. In one embodiment, a method for fabricating interposer devices having substrates includes forming a plurality of conductive sections on a first substrate in a first pattern. The method continues by forming a plurality of conductive sections on a second substrate in a second pattern. The method further includes constructing a plurality of conductive lines in a common third pattern on both the first substrate and the second substrate. The conductive lines can be formed on the first and second substrates either before or after forming the first pattern of conductive sections on the first substrate and/or forming the second pattern of conductive sections on the second substrate.
    Type: Application
    Filed: November 5, 2009
    Publication date: February 25, 2010
    Applicant: MICRON TECHNOLOGY, INC.
    Inventor: Mark S. Johnson
  • Patent number: 7655508
    Abstract: A method of encapsulating an article having first and second surfaces, includes positioning the article on a carrier such that at least a portion of the first surface contacts the carrier. A portion of the carrier carrying the article is then positioned within a mold and a seal is formed between the mold and the carrier. The mold is then filled with an encapsulating material to form a seal between the article and the carrier.
    Type: Grant
    Filed: July 20, 2004
    Date of Patent: February 2, 2010
    Assignee: Micron Technology, Inc.
    Inventors: Mark S. Johnson, Todd O. Bolken
  • Patent number: 7652365
    Abstract: The present invention provides microelectronic component assemblies and lead frame structures that may be useful in such assemblies. For example, one such lead frame structure may include a set of leads extending in a first direction and a dam bar. Each of the leads may have an outer length and an outer edge. The dam bar may include a plurality of dam bar elements, with each dam bar element being joined to the outer lengths of two adjacent leads. In this example, each dam bar element has an outer edge that extends farther outwardly than the outer edges of the two adjacent leads. The outer edges of the leads and the outer edges of the dam bar elements together define an irregular outer edge of the dam bar. Other lead frame structures and various microelectronic component assemblies are also shown and described.
    Type: Grant
    Filed: November 20, 2007
    Date of Patent: January 26, 2010
    Assignee: Micron Technologies, Inc.
    Inventor: Mark S. Johnson
  • Patent number: 7632747
    Abstract: Methods for fabricating conductive structures on and/or in interposing devices and microfeature devices that are formed using such methods are disclosed herein. In one embodiment, a method for fabricating interposer devices having substrates includes forming a plurality of conductive sections on a first substrate in a first pattern. The method continues by forming a plurality of conductive sections on a second substrate in a second pattern. The method further includes constructing a plurality of conductive lines in a common third pattern on both the first substrate and the second substrate. The conductive lines can be formed on the first and second substrates either before or after forming the first pattern of conductive sections on the first substrate and/or forming the second pattern of conductive sections on the second substrate.
    Type: Grant
    Filed: August 19, 2004
    Date of Patent: December 15, 2009
    Assignee: Micron Technology, Inc.
    Inventor: Mark S. Johnson
  • Patent number: 7608788
    Abstract: The present invention relates generally to a plating buss design and method for minimizing short circuit problems in PCB panel singulation. More particularly, the invention encompasses a serpentine plating buss which increases the PCB singulation process window thereby minimizing short circuit problems due to indexing errors caused by occasional manufacturing and equipment alignment problems. The serpentine plating buss design therefore increases board yield.
    Type: Grant
    Filed: October 9, 2007
    Date of Patent: October 27, 2009
    Assignee: Micron Technology, Inc.
    Inventor: Mark S. Johnson
  • Publication number: 20090057848
    Abstract: Microfeature dies with redistribution structures that reduce or eliminate line interference are disclosed. The microfeature dies can include a substrate having a bond site and integrated circuitry electrically connected to the bond site. The microfeature dies can also include and a redistribution structure coupled to the substrate. The redistribution structure can include an external contact site configured to receive an electric coupler, a conductive line that is electrically connected to the external contact site and the bond site, and a conductive shield that at least partially surrounds the conductive line.
    Type: Application
    Filed: August 28, 2007
    Publication date: March 5, 2009
    Applicant: Micron Technology, Inc.
    Inventor: Mark S. Johnson
  • Patent number: 7439450
    Abstract: The present invention relates generally to a plating buss design and method for minimizing short circuit problems in PCB panel singulation. More particularly, the invention encompasses a serpentine plating buss which increases the PCB singulation process window thereby minimizing short circuit problems due to indexing errors caused by occasional manufacturing and equipment alignment problems. The serpentine plating buss design therefore increases board yield.
    Type: Grant
    Filed: June 6, 2006
    Date of Patent: October 21, 2008
    Assignee: Micron Technology, Inc.
    Inventor: Mark S. Johnson
  • Patent number: 7298025
    Abstract: The present invention provides microelectronic component assemblies and lead frame structures that may be useful in such assemblies. For example, one such lead frame structure may include a set of leads extending in a first direction and a dam bar. Each of the leads may have an outer length and an outer edge. The dam bar may include a plurality of dam bar elements, with each dam bar element being joined to the outer lengths of two adjacent leads. In this example, each dam bar element has an outer edge that extends farther outwardly than the outer edges of the two adjacent leads. The outer edges of the leads and the outer edges of the dam bar elements together define an irregular outer edge of the dam bar. Other lead frame structures and various microelectronic component assemblies are also shown and described.
    Type: Grant
    Filed: March 15, 2005
    Date of Patent: November 20, 2007
    Assignee: Micron Technology, Inc.
    Inventor: Mark S. Johnson
  • Patent number: 7296346
    Abstract: The present invention relates generally to a plating buss design and method for minimizing short circuit problems in PCB panel singulation. More particularly, the invention encompasses a serpentine plating buss which increases the PCB singulation process window thereby minimizing short circuit problems due to indexing errors caused by occasional manufacturing and equipment alignment problems. The serpentine plating buss design therefore increases board yield.
    Type: Grant
    Filed: July 25, 2006
    Date of Patent: November 20, 2007
    Assignee: Micron Technology, Inc.
    Inventor: Mark S. Johnson
  • Patent number: 7247520
    Abstract: The present invention provides microelectronic component assemblies and lead frame structures that may be useful in such assemblies. For example, one such lead frame structure may include a set of leads extending in a first direction and a dam bar. Each of the leads may have an outer length and an outer edge. The dam bar may include a plurality of dam bar elements, with each dam bar element being joined to the outer lengths of two adjacent leads. In this example, each dam bar element has an outer edge that extends farther outwardly than the outer edges of the two adjacent leads. The outer edges of the leads and the outer edges of the dam bar elements together define an irregular outer edge of the dam bar. Other lead frame structures and various microelectronic component assemblies are also shown and described.
    Type: Grant
    Filed: March 15, 2005
    Date of Patent: July 24, 2007
    Assignee: Micron Technology, Inc.
    Inventor: Mark S. Johnson
  • Patent number: 7181837
    Abstract: The present invention relates generally to a plating buss design and method for minimizing short circuit problems in PCB panel singulation. More particularly, the invention encompasses a serpentine plating buss which increases the PCB singulation process window thereby minimizing short circuit problems due to indexing errors caused by occasional manufacturing and equipment alignment problems. The serpentine plating buss design therefore increases board yield.
    Type: Grant
    Filed: June 4, 2004
    Date of Patent: February 27, 2007
    Assignee: Micron Technology, Inc.
    Inventor: Mark S. Johnson
  • Patent number: 7151013
    Abstract: A high density semiconductor package with thermally enhanced properties is described. The semiconductor package includes a pair of lead frames, each being attached to a respective semiconductor die. The dies are attached to respective lead frames via an adhering material, such as a tape. Further, the dies are each electrically connected to fingers of each lead frame. In one illustrated embodiment, the dies and portions of the fingers are encapsulated in such a way as to leave one surface of each die exposed. In another illustrated embodiment, heat dissipation for the semiconductor package occurs through exposed fingers of the lead frames which adhere semiconductor dies within a cavity located therebetween.
    Type: Grant
    Filed: October 1, 2002
    Date of Patent: December 19, 2006
    Assignee: Micron Technology, Inc.
    Inventors: David J. Corisis, Mike Brooks, Mark S. Johnson, Larry D. Kinsman
  • Patent number: 7148974
    Abstract: A method for tracking the movement and position of mobile agents using light detection and ranging (LIDAR) as a stand-off optical detection technique. The positions of the agents are tracked by analyzing the time-history of a series of optical measurements made over the field of view of the optical system. This provides a (time+3-D) or (time+2-D) mapping of the location of the mobile agents. Repeated pulses of a laser beam impinge on a mobile agent, such as a bee, and are backscattered from the agent into a LIDAR detection system. Alternatively, the incident laser pulses excite fluorescence or phosphorescence from the agent, which is detected using a LIDAR system. Analysis of the spatial location of signals from the agents produced by repeated pulses generates a multidimensional map of agent location.
    Type: Grant
    Filed: January 13, 2004
    Date of Patent: December 12, 2006
    Assignee: Sandia Corporation
    Inventors: Randal L. Schmitt, Susan Fae Ann Bender, Philip J. Rodacy, Philip J. Hargis, Jr., Mark S. Johnson
  • Patent number: 7132734
    Abstract: The present invention provides microelectronic component assemblies and lead frame structures that may be useful in such assemblies. For example, one such lead frame structure may include a set of leads extending in a first direction and a dam bar. Each of the leads may have an outer length and an outer edge. The dam bar may include a plurality of dam bar elements, with each dam bar element being joined to the outer lengths of two adjacent leads. In this example, each dam bar element has an outer edge that extends farther outwardly than the outer edges of the two adjacent leads. The outer edges of the leads and the outer edges of the dam bar elements together define an irregular outer edge of the dam bar. Other lead frame structures and various microelectronic component assemblies are also shown and described.
    Type: Grant
    Filed: January 6, 2003
    Date of Patent: November 7, 2006
    Assignee: Micron Technology, Inc.
    Inventor: Mark S. Johnson
  • Patent number: 7071421
    Abstract: Stacked microfeature devices and associated methods of manufacture are disclosed. A package in accordance with one embodiment includes first and second microfeature devices having corresponding first and second bond pad surfaces that face toward each other. First bond pads can be positioned at least proximate to the first bond pad surface and second bond pads can be positioned at least proximate to the second bond pad surface. A package connection site can provide electrical communication between the first microfeature device and components external to the package. A wirebond can be coupled between at least one of the first bond pads and the package connection site, and an electrically conductive link can be coupled between the first microfeature device and at least one of the second bond pads of the second microfeature device. Accordingly, the first microfeature device can form a portion of an electrical link to the second microfeature device.
    Type: Grant
    Filed: August 29, 2003
    Date of Patent: July 4, 2006
    Assignee: Micron Technology, Inc.
    Inventors: Mung Suan Heng, Kok Chua Tan, Vince Chan Seng Leong, Mark S. Johnson
  • Patent number: 6951981
    Abstract: A method of encapsulating an article having first and second surfaces, includes positioning a first molding section in a sealing relationship with the first surface of the article and positioning a second molding section adjacent the second surface of the article. The first molding section is filled first thereby forcing the second surface of the article into a sealing engagement with the second molding section. The second molding section is then filled.
    Type: Grant
    Filed: December 17, 2002
    Date of Patent: October 4, 2005
    Assignee: Micron Technology, Inc.
    Inventors: Mark S. Johnson, Todd O. Bolken
  • Patent number: 6909929
    Abstract: A stereolithographic method and apparatus for applying packaging material to workpieces, such as preformed electronic components, including semiconductor dice, with a high degree of precision, and resulting articles. A machine vision system including at least one camera is operably associated with a computer controlling a stereolithographic system for application of material so that the system may recognize the position and orientation of workpieces, such as semiconductor dice, to which the material is to be applied. The requirement for precise mechanical workpiece alignment is eliminated, and the ability of the system to recognize size, configuration and topography of different workpieces affords greater manufacturing flexibility. The method includes stereolithographic application of material for packaging electronic components, and the electronic components so packaged are also part of the invention.
    Type: Grant
    Filed: November 12, 2002
    Date of Patent: June 21, 2005
    Assignee: Micron Technology, Inc.
    Inventors: Warren M. Farnworth, Mark S. Johnson
  • Publication number: 20040266069
    Abstract: A method of encapsulating an article having first and second surfaces, includes positioning the article on a carrier such that at least a portion of the first surface contacts the carrier. A portion of the carrier carrying the article is then positioned within a mold and a seal is formed between the mold and the carrier. The mold is then filled with an encapsulating material to form a seal between the article and the carrier.
    Type: Application
    Filed: July 20, 2004
    Publication date: December 30, 2004
    Inventors: Mark S. Johnson, Todd O. Bolken