Patents by Inventor Mark Saly

Mark Saly has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220325412
    Abstract: Methods for atomic layer deposition (ALD) of plasma enhanced atomic layer deposition (PEALD) of low-? films are described.
    Type: Application
    Filed: June 24, 2022
    Publication date: October 13, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Shuaidi Zhang, Ning Li, Mihaela A. Balseanu, Bhaskar Jyoti Bhuyan, Mark Saly, Thomas Knisley
  • Patent number: 11447865
    Abstract: Methods for atomic layer deposition (ALD) of plasma enhanced atomic layer deposition (PEALD) of low-K films are described.
    Type: Grant
    Filed: November 17, 2020
    Date of Patent: September 20, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Shuaidi Zhang, Ning Li, Mihaela A. Balseanu, Bhaskar Jyoti Bhuyan, Mark Saly, Thomas Knisley
  • Patent number: 11450525
    Abstract: Methods of depositing films are described. Specifically, methods of depositing metal oxide films are described. A metal oxide film is selectively deposited on a metal layer relative to a dielectric layer by exposing a substrate to an organometallic precursor followed by exposure to an oxidant.
    Type: Grant
    Filed: September 14, 2018
    Date of Patent: September 20, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Liqi Wu, Hung Nguyen, Bhaskar Jyoti Bhuyan, Mark Saly, Feng Q. Liu, David Thompson
  • Publication number: 20220259734
    Abstract: Methods of forming a metal film having a metal halide with a reducing agent are disclosed. The reducing agent, the reducing agent includes a group IV element containing heterocyclic compound, a radical initiator, an alkly alane, a diborene species and/or a Sn(II) compound.
    Type: Application
    Filed: February 16, 2021
    Publication date: August 18, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Bhaskar Jyoti Bhuyan, Mark Saly, Lakmal C. Kalutarage, Thomas Knisley
  • Patent number: 11417515
    Abstract: Methods of enhancing selective deposition are described. In some embodiments, a blocking layer is deposited on a metal surface before deposition of a dielectric. In some embodiments, a metal surface is functionalized to enhance or decrease its reactivity.
    Type: Grant
    Filed: July 17, 2018
    Date of Patent: August 16, 2022
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Bhaskar Jyoti Bhuyan, Mark Saly, Lakmal C. Kalutarage, Thomas Knisley
  • Publication number: 20220254953
    Abstract: Method for cleaning and encapsulating microLED features are disclosed. Some embodiments provide for a wet clean process and a dry clean process to remove contaminants from the microLED feature. Some embodiments provide for the encapsulation of a clean microLED feature. Some embodiments provide improved crystallinity of the microLED feature and the capping layer. Some embodiments provide improved EQE of microLED devices formed from the disclosed microLED features.
    Type: Application
    Filed: April 26, 2022
    Publication date: August 11, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Thomas Knisley, Bhaskar Jyoti Bhuyan, Mark Saly, Mingwei Zhu
  • Patent number: 11408068
    Abstract: Methods for depositing tellurium-containing films on a substrate are described. The substrate is exposed to a tellurium precursor and a reactant to form the tellurium-containing film (e.g., elemental tellurium, tellurium oxide, tellurium carbide, tellurium silicide, germanium telluride, antimony telluride, germanium antimony telluride). The exposures can be sequential or simultaneous.
    Type: Grant
    Filed: February 1, 2021
    Date of Patent: August 9, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Thomas Knisley, Keenan N. Woods, Mark Saly, Charles H. Winter, Apoorva Upadhyay
  • Patent number: 11393678
    Abstract: Methods for deposition of high-hardness low-? dielectric films are described. More particularly, a method of processing a substrate is provided. The method includes flowing a precursor-containing gas mixture into a processing volume of a processing chamber having a substrate, the precursor having the general formula (I) wherein R1, R2, R3, R4, R5, R6, R7, and R8 are independently selected from hydrogen (H), alkyl, alkoxy, vinyl, silane, amine, or halide; maintaining the substrate at a pressure in a range of about 0.1 mTorr and about 10 Torr and at a temperature in a range of about 200° C. to about 500° C.; and generating a plasma at a substrate level to deposit a dielectric film on the substrate.
    Type: Grant
    Filed: August 10, 2020
    Date of Patent: July 19, 2022
    Assignee: Applied Materials, Inc.
    Inventors: William J. Durand, Mark Saly, Lakmal C. Kalutarage, Kang Sub Yim, Shaunak Mukherjee
  • Patent number: 11390638
    Abstract: Molybdenum(VI) coordination complexes are described. Methods for depositing molybdenum-containing films on a substrate are described. The substrate is exposed to a molybdenum precursor and a reactant to form the molybdenum-containing film (e.g., elemental molybdenum, molybdenum oxide, molybdenum carbide, molybdenum silicide, molybdenum nitride). The exposures can be sequential or simultaneous.
    Type: Grant
    Filed: January 12, 2021
    Date of Patent: July 19, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Andrea Leoncini, Paul Mehlmann, Nemanja Dordevic, Han Vinh Huynh, Doreen Wei Ying Yong, Mark Saly, Bhaskar Jyoti Bhuyan, Feng Q. Liu
  • Publication number: 20220220137
    Abstract: Molybdenum(VI) coordination complexes are described. Methods for depositing molybdenum-containing films on a substrate are described. The substrate is exposed to a molybdenum precursor and a reactant to form the molybdenum-containing film (e.g., elemental molybdenum, molybdenum oxide, molybdenum carbide, molybdenum silicide, molybdenum nitride). The exposures can be sequential or simultaneous.
    Type: Application
    Filed: January 12, 2021
    Publication date: July 14, 2022
    Applicants: Applied Materials, Inc., National University of Singapore
    Inventors: Andrea Leoncini, Paul Mehlmann, Nemanja Dordevic, Han Vinh Huynh, Doreen Wei Ying Yong, Mark Saly, Bhaskar Jyoti Bhuyan, Feng Q. Liu
  • Publication number: 20220220139
    Abstract: Molybdenum(0) coordination complexes comprising ligands which each coordinate to the metal center by nitrogen or phosphorous are described. Methods for depositing molybdenum-containing films on a substrate are described. The substrate is exposed to a molybdenum precursor and a reactant to form the molybdenum-containing film (e.g., elemental molybdenum, molybdenum oxide, molybdenum carbide, molybdenum silicide, molybdenum nitride). The exposures can be sequential or simultaneous.
    Type: Application
    Filed: January 12, 2021
    Publication date: July 14, 2022
    Inventors: Andrea Leoncini, Paul Mehlmann, Nemanja Dordevic, Han Vinh Huynh, Doreen Wei Ying Yong, Mark Saly, Bhaskar Jyoti Bhuyan
  • Patent number: 11384648
    Abstract: Protective coatings on an aerospace component are provided. An aerospace component includes a surface containing nickel, nickel superalloy, aluminum, chromium, iron, titanium, hafnium, alloys thereof, or any combination thereof, and a coating disposed on the surface, where the coating contains a nanolaminate film stack having two or more pairs of a first deposited layer and a second deposited layer. The first deposited layer contains chromium oxide, chromium nitride, aluminum oxide, aluminum nitride, or any combination thereof, the second deposited layer contains aluminum oxide, aluminum nitride, silicon oxide, silicon nitride, silicon carbide, yttrium oxide, yttrium nitride, yttrium silicon nitride, hafnium oxide, hafnium nitride, hafnium silicide, hafnium silicate, titanium oxide, titanium nitride, titanium silicide, titanium silicate, or any combination thereof, and the first deposited layer and the second deposited layer have different compositions from each other.
    Type: Grant
    Filed: April 8, 2020
    Date of Patent: July 12, 2022
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Yuriy Melnik, Sukti Chatterjee, Kaushal Gangakhedkar, Jonathan Frankel, Lance A. Scudder, Pravin K. Narwankar, David Alexander Britz, Thomas Knisley, Mark Saly, David Thompson
  • Patent number: 11371136
    Abstract: Methods of depositing a film selectively onto a first substrate surface relative to a second substrate surface are described. The methods include exposing a substrate to a blocking molecule to selectively deposit a blocking layer on the first surface. The blocking layer is exposed to a polymer initiator to form a networked blocking layer. A layer is selectively formed on the second surface. The blocking layer inhibits deposition on the first surface. The networked layer may then optionally be removed.
    Type: Grant
    Filed: September 19, 2018
    Date of Patent: June 28, 2022
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Bhaskar Jyoti Bhuyan, Mark Saly, David Thompson, Lakmal C. Kalutarage, Rana Howlader
  • Publication number: 20220197146
    Abstract: Embodiments include a method of forming a metal oxo photoresist on a substrate. In an embodiment, the method comprises providing a target in a vacuum chamber, where the target comprises a metal. The method may continue with flowing a hydrocarbon gas and an inert gas into the vacuum chamber, and striking a plasma in the vacuum chamber. In an embodiment, the method further continues with depositing the metal oxo photoresist on the substrate, where the metal oxo photoresist comprise metal-carbon bonds and metal-oxygen bonds.
    Type: Application
    Filed: September 1, 2021
    Publication date: June 23, 2022
    Inventors: Lauren Bagby, Stephen Weeks, Aaron Dangerfield, Lakmal Kalutarage, Jeffrey Anthis, Mark Saly, Regina Freed, Wayne French, Kelvin Chan
  • Patent number: 11342481
    Abstract: Method for cleaning and encapsulating microLED features are disclosed. Some embodiments provide for a wet clean process and a dry clean process to remove contaminants from the microLED feature. Some embodiments provide for the encapsulation of a clean microLED feature. Some embodiments provide improved crystallinity of the microLED feature and the capping layer. Some embodiments provide improved EQE of microLED devices formed from the disclosed microLED features.
    Type: Grant
    Filed: May 26, 2020
    Date of Patent: May 24, 2022
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Thomas Knisley, Bhaskar Jyoti Bhuyan, Mark Saly, Mingwei Zhu
  • Publication number: 20220154337
    Abstract: Methods for atomic layer deposition (ALD) of plasma enhanced atomic layer deposition (PEALD) of low-K films are described.
    Type: Application
    Filed: November 17, 2020
    Publication date: May 19, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Shuaidi Zhang, Ning Li, Mihaela A. Balseanu, Bhaskar Jyoti Bhuyan, Mark Saly, Thomas Knisley
  • Publication number: 20220139720
    Abstract: Embodiments of this disclosure provide methods for etching oxide materials. Some embodiments of this disclosure provide methods which selectively etch oxide materials over other materials. In some embodiments, the methods of this disclosure are performed by atomic layer etching (ALE). In some embodiments, the methods of this disclosure are performed within a processing chamber comprising a nickel chamber material.
    Type: Application
    Filed: January 13, 2022
    Publication date: May 5, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Keenan N. Woods, Zhenjiang Cui, Mark Saly
  • Patent number: 11289328
    Abstract: Chromium containing precursors and methods of forming chromium-containing thin films are described. The chromium precursor has a chromium-diazadiene bond or cyclopentadienyl ligand and is homoleptic or heteroleptic. A suitable reactant is used to provide one of a metallic chromium film or a film comprising one or more of an oxide, nitride, carbide, boride and/or silicide. Methods of forming ternary materials comprising chromium with two or more of oxygen, nitrogen, carbon, boron, silicon, titanium, ruthenium and/or tungsten are also described. Methods of filling gaps in a substrate with a chromium-containing film are also described.
    Type: Grant
    Filed: June 28, 2019
    Date of Patent: March 29, 2022
    Assignee: Applied Materials Inc.
    Inventors: Thomas Knisley, Mark Saly, Lakmal C. Kalutarage, David Thompson
  • Patent number: 11286564
    Abstract: Tin containing precursors and methods of forming tin-containing thin films are described. The tin precursor has a tin-diazadiene bond and is homoleptic or heteroleptic. A suitable reactant is used to provide one of a metallic tin film or a film comprising one or more of an oxide, nitride, carbide, boride and/or silicide. Methods of forming ternary materials comprising tin with two or more of oxygen, nitrogen, carbon, boron, silicon, titanium, ruthenium and/or tungsten are also described.
    Type: Grant
    Filed: June 28, 2019
    Date of Patent: March 29, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Thomas Knisley, Mark Saly, David Thompson
  • Patent number: 11239091
    Abstract: Embodiments of this disclosure provide methods for etching oxide materials. Some embodiments of this disclosure provide methods which selectively etch oxide materials over other materials. In some embodiments, the methods of this disclosure are performed by atomic layer etching (ALE). In some embodiments, the methods of this disclosure are performed within a processing chamber comprising a nickel chamber material.
    Type: Grant
    Filed: June 11, 2020
    Date of Patent: February 1, 2022
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Keenan N. Woods, Zhenjiang Cui, Mark Saly