Patents by Inventor Martin B. Wolk
Martin B. Wolk has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20230184996Abstract: An optical metasurface film includes a flexible polymeric film having a first major surface, a patterned polymer layer having a first surface proximate to the first major surface of the flexible polymeric film and having a second nanostructured surface opposite the first surface, and a refractive index contrast layer including a refractive index contrast material adjacent to the nanostructured surface of the patterned polymer layer forming a nanostructured bilayer with a nano structured interface. The nanostructured bilayer comprising a plurality of nanostructures disposed on the flexible polymeric film. The nanostructured bilayer imparts a light phase shift that varies as a function of position of the nano structured bilayer on the flexible polymeric film. The light phase shift of the nanostructured bilayer defines a predetermined operative phase profile of the optical metasurface film. A light reflecting layer is in optical communication with the nano structured bilayer.Type: ApplicationFiled: April 9, 2021Publication date: June 15, 2023Inventors: Martin B. WOLK, Robert L. BROTT, Karl K. STENSVAD, Vadim N. SAVVATEEV, James M. NELSON, Lin ZHAO, Caitlin RACE, Adam D. HAAG
-
Publication number: 20230141149Abstract: Organic light emitting diode (OLED) devices are disclosed that include a first layer; a backfill layer having a structured first side and a second side; a planarization layer having a structured first side and a second side; and a second layer; wherein the second side of the backfill layer is coincident with and adjacent to the first layer, the second side of the planarization layer is coincident with and adjacent to the second layer, the structured first side of the backfill layer and structured first side of the planarization layer form a structured interface, the refractive index of the backfill layer is index matched to the first layer, and the refractive index of the planarization layer is index matched to the second layer.Type: ApplicationFiled: January 4, 2023Publication date: May 11, 2023Inventors: Martin B. Wolk, Michael Benton Free, Margaret M. Vogel-Martin, Evan L. Schwartz, Mieczyslaw H. Mazurek, Terry O. Collier
-
Patent number: 11565495Abstract: Organic light emitting diode (OLED) devices are disclosed that include a first layer; a backfill layer having a structured first side and a second side; a planarization layer having a structured first side and a second side; and a second layer; wherein the second side of the backfill layer is coincident with and adjacent to the first layer, the second side of the planarization layer is coincident with and adjacent to the second layer, the structured first side of the backfill layer and structured first side of the planarization layer form a structured interface, the refractive index of the backfill layer is index matched to the first layer, and the refractive index of the planarization layer is index matched to the second layer.Type: GrantFiled: June 20, 2022Date of Patent: January 31, 2023Assignee: 3M INNOVATIVE PROPERTIES COMPANYInventors: Martin B. Wolk, Michael Benton Free, Margaret M. Vogel-Martin, Evan L. Schwartz, Mieczyslaw H. Mazurek, Terry O. Collier
-
Publication number: 20220404525Abstract: An optical metasurface film includes a flexible polymeric film having a first major surface, a patterned polymer layer having a first surface proximate to the first major surface of the flexible polymeric film and having a second nanostructured surface opposite the first surface, and a refractive index contrast layer adjacent to the nanostructured surface of the patterned polymer layer forming a nanostructured bilayer with a nanostructured interface. The nanostructured bilayer acts locally on amplitude, phase, or polarization of light, or a combination thereof and imparts a light phase shift that varies as a function of position of the nano structured bilayer on the flexible polymeric film. The light phase shift of the nanostructured bilayer defines a predetermined operative phase profile of the optical metasurface film.Type: ApplicationFiled: December 1, 2020Publication date: December 22, 2022Inventors: Martin B. Wolk, Robert L. Brott, Karl K. Stensvad, James M. Nelson, Federico Capasso, Xinghui Yin, Joon-Suh Park
-
Publication number: 20220324195Abstract: Organic light emitting diode (OLED) devices are disclosed that include a first layer; a backfill layer having a structured first side and a second side; a planarization layer having a structured first side and a second side; and a second layer; wherein the second side of the backfill layer is coincident with and adjacent to the first layer, the second side of the planarization layer is coincident with and adjacent to the second layer, the structured first side of the backfill layer and structured first side of the planarization layer form a structured interface, the refractive index of the backfill layer is index matched to the first layer, and the refractive index of the planarization layer is index matched to the second layer.Type: ApplicationFiled: June 20, 2022Publication date: October 13, 2022Inventors: Martin B. Wolk, Michael Benton Free, Margaret M. Vogel-Martin, Evan L. Schwartz, Mieczyslaw H. Mazurek, Terry O. Collier
-
Patent number: 11407196Abstract: Article comprising a first, microstructured layer comprising a first material, and having first and second opposed major surfaces, the first major surface being a microstructured surface, and the microstructured surface having peaks and valleys, wherein the peaks are microstructural features each having a height defined by the distance between the peak of the respective microstructural feature and an adjacent valley; and a second layer comprising at least one of a crosslinkable or crosslinked composition, wherein at least a portion of the second major surface of the second layer is directly attached to at least a portion of the first major surface of the first, microstructured layer. Articles described herein are useful, for example, for optical film applications. For example.Type: GrantFiled: December 22, 2016Date of Patent: August 9, 2022Assignee: 3M Innovative Properties CompanyInventors: Jeffrey L. Solomon, Michael Benton Free, Steven J. McMan, Martin B. Wolk, Elisa M. Cross
-
Patent number: 11396156Abstract: Organic light emitting diode (OLED) devices are disclosed that include a first layer; a backfill layer having a structured first side and a second side; a planarization layer having a structured first side and a second side; and a second layer; wherein the second side of the backfill layer is coincident with and adjacent to the first layer, the second side of the planarization layer is coincident with and adjacent to the second layer, the structured first side of the backfill layer and structured first side of the planarization layer form a structured interface, the refractive index of the backfill later is index matched to the first layer, and the refractive index of the planarization layer is index matched to the second layer.Type: GrantFiled: July 26, 2018Date of Patent: July 26, 2022Assignee: 3M Innovative Properties CompanyInventors: Martin B. Wolk, Michael Benton Free, Margaret M. Vogel-Martin, Evan L. Schwartz, Mieczyslaw H. Mazurek, Terry O. Collier
-
Patent number: 11273630Abstract: Transfer films, articles made therewith, and methods of making and using transfer films to form an electrical stack are disclosed. The transfer films may include a plurality of co-extensive electrical protolayers forming an electrical protolayer stack, at least selected or each electrical protolayer independently comprising at least 25 wt % sacrificial material and a thermally stable material and having a uniform thickness of less than 25 micrometers. The transfer films may include a plurality of co-extensive electrical protolayers forming an electrical protolayer stack, at least selected or each protolayer independently exhibiting a complex viscosity of between 103 and 104 Poise at a shear rate of 100/s when heated to a temperature between its Tg and Tdec.Type: GrantFiled: August 6, 2019Date of Patent: March 15, 2022Assignee: 3M INNOVATIVE PROPERTIES COMPANYInventors: Martin B. Wolk, Michael Benton Free, Daniel J. Schmidt, Justin P. Meyer, Mark J. Pellerite, Stephen A. Johnson, Terry O. Collier, Xiaohua Ma
-
Publication number: 20220063991Abstract: A substantially planar self-folding film assembly to generate a folded three-dimensional assembly. The assembly includes a flexible support substrate, adhesive elements, and folding members. The folding members include a base, a folding region, and a hinge adjacent each folding region attached at the base to the flexible support substrate by at least one of the adhesive elements. An array of polymer actuators is co-extensive, or shaped to be not co-extensive, with each of the flexible folding members. Upon activation by a patterned light to heat conversion layer, each polymer actuator is designed and configured to provide a displacement of the corresponding flexible folding member about each hinge.Type: ApplicationFiled: December 24, 2019Publication date: March 3, 2022Inventors: Jia Hu, Martin B. Wolk, Thomas R. Corrigan, Mitchell T. Nommensen, Michael Benton Free, Kurt J. Halverson, Erik A. Aho
-
Patent number: 11247501Abstract: Transfer films, articles made therewith, and layer-by-layer methods of making and using transfer films to form an inorganic optical stack are disclosed.Type: GrantFiled: August 27, 2014Date of Patent: February 15, 2022Assignee: 3M Innovative Properties CompanyInventors: Daniel J. Schmidt, Mark J. Pellerite, Martin B. Wolk, Stephen A. Johnson
-
Publication number: 20210389503Abstract: Nanostructured articles, materials for the nanostructured articles, and intermediate articles for use in making the nanostructured articles. The nanostructured articles can be formed on a flexible film and are useful for optical metasurface applications and possibly other applications. The articles can include nanoreplicated layers or pattern transfer layers of engineered nanostructures.Type: ApplicationFiled: November 7, 2019Publication date: December 16, 2021Inventors: Martin B. Wolk, James M. Nelson, Karl K. Stensvad, Henrik B. van Lengerich, Christopher S. Lyons, Moses M. David, Jeffrey L. Solomon, Nicholas C. Erickson, Caleb T. Nelson
-
Publication number: 20210347135Abstract: Materials and methods useful in forming nano-scale features on substrates, and articles such as optical films incorporating such nano-scale patterned substrates.Type: ApplicationFiled: November 8, 2019Publication date: November 11, 2021Inventors: Henrik B. van Lengerich, Karl K. Stensvad, Edwin L. Kusilek, Mathew S. Stay, Caleb T. Nelson, Christopher S. Lyons, Moses M. David, Jeffrey L. Solomon, Martin B. Wolk, Nicholas C. Erickson, James Zhu, James M. Nelson
-
Patent number: 11125406Abstract: The present disclosure provides lamination transfer films and use of the lamination transfer films, particular in the fabrication of architectural glass elements, such as those used in Insulated Glass Units (IGUs). The lamination transfer films may be used to transfer functional layers and structures. The lamination transfer films may include a support film that can be removed during the transfer process, and the transferred materials are primarily inorganic. The resulting transferred structures on glass generally have high photo- and thermal-stability, and therefore can successfully be applied to the glass surfaces that are interior to the cavity within an IGU. The lamination transfer films can also be patterned such that macroscopic patterns of microoptical elements can be applied on a glass surface.Type: GrantFiled: January 23, 2020Date of Patent: September 21, 2021Assignee: 3M INNOVATIVE PROPERTIES COMPANYInventors: Michael Benton Free, Martin B. Wolk, Olester Benson, Jr., Bing Hao, Charles A. Marttila, Craig R. Schardt, Mieczyslaw H. Mazurek, Justin P. Meyer, Manoj Nirmal
-
Patent number: 11086056Abstract: The present disclosure relates to micro-optical assemblies containing at least one optical element adhered to a receptor substrate, e.g. a transparent receptor substrate, the receptor substrate contains at least one graphics layer. The micro-optical assemblies include both functional micro-optical structures that can alter, for example, incident light, and a graphic layer, which includes at least one graphic, e.g. a graphic design, which may include color, patterns, imagery, indicia and the like. The combination of the micro-optical elements with the graphic of the graphics layer can provide unique light altering assemblies that have graphic designs that may be functional, e.g. to display a message, and/or have aesthetic value. The micro-optical assemblies of the present disclosure are useful in a variety of applications which include, but are not limited to, display and graphics applications and architectural glass applications.Type: GrantFiled: June 14, 2016Date of Patent: August 10, 2021Assignee: 3M INNOVATIVE PROPERTIES COMPANYInventors: Martin B. Wolk, Thomas J. Metzler, Samuel J. Carpenter, Denis Terzic, Mitchell T. Nommensen, Suman K. Patel, Mikhail L. Pekurovsky, Donald G. Peterson, Terry O. Collier
-
Patent number: 10988979Abstract: The present disclosure provides lamination transfer films and use of the lamination transfer films, particular in the fabrication of architectural glass elements, such as those used in Insulated Glass Units (IGUs). The lamination transfer films may be used to transfer functional layers and structures. The lamination transfer films may include a support film that can be removed during the transfer process, and the transferred materials are primarily inorganic. The resulting transferred structures on glass generally have high photo- and thermal-stability, and therefore can successfully be applied to the glass surfaces that are interior to the cavity within an IGU. The lamination transfer films can also be patterned such that macroscopic patterns of microoptical elements can be applied on a glass surface.Type: GrantFiled: August 28, 2020Date of Patent: April 27, 2021Assignee: 3M Innovative Properties CompanyInventors: Michael Benton Free, Martin B. Wolk, Olester Benson, Jr., Bing Hao, Charles A. Marttila, Craig R. Schardt, Mieczyslaw H. Mazurek, Justin P. Meyer, Manoj Nirmal
-
Patent number: 10967399Abstract: An organofluorine coating on a major surface of a substrate, wherein the organofluorine coating has a surface composition of about 5 at % to about 15 at % oxygen and about 30 at % to about 50 at % fluorine.Type: GrantFiled: June 15, 2017Date of Patent: April 6, 2021Assignee: 3M Innovative Properties CompanyInventors: Ta-Hua Yu, Moses M. David, Kevin D. Hagen, Samuel J. Carpenter, Eric J. Hanson, Martin B. Wolk, Steven J. McMan, Evan L. Schwartz
-
Patent number: 10957878Abstract: Lamination transfer films and methods for transferring a structured layer to a receptor substrate. The transfer films include a carrier substrate having a releasable surface, a sacrificial template layer applied to the releasable surface of the carrier substrate and having a non-planar structured surface, and a thermally stable backfill layer applied to the non-planar structured surface of the sacrificial template layer. The sacrificial template layer is capable of being removed from the backfill layer, such as via pyrolysis, while leaving the structured surface of the backfill layer substantially intact.Type: GrantFiled: August 31, 2017Date of Patent: March 23, 2021Assignee: 3M Innovative Properties CompanyInventors: Martin B. Wolk, Mieczyslaw H. Mazurek, Sergey Lamansky, Margaret M. Vogel-Martin, Vivian W. Jones, Olester Benson, Jr., Michael Benton Free, Evan L. Schwartz, Randy S. Bay, Graham M. Clarke
-
Publication number: 20200392782Abstract: The present disclosure provides lamination transfer films and use of the lamination transfer films, particular in the fabrication of architectural glass elements, such as those used in Insulated Glass Units (IGUs). The lamination transfer films may be used to transfer functional layers and structures. The lamination transfer films may include a support film that can be removed during the transfer process, and the transferred materials are primarily inorganic. The resulting transferred structures on glass generally have high photo- and thermal-stability, and therefore can successfully be applied to the glass surfaces that are interior to the cavity within an IGU. The lamination transfer films can also be patterned such that macroscopic patterns of microoptical elements can be applied on a glass surface.Type: ApplicationFiled: August 28, 2020Publication date: December 17, 2020Inventors: Michael Benton Free, Martin B. Wolk, Olester Benson, JR., Bing Hao, Charles A. Marttila, Craig R. Schardt, Mieczyslaw H. Mazurek, Justin P. Meyer, Manoj Nirmal
-
Patent number: 10794114Abstract: The present disclosure provides lamination transfer films and use of the lamination transfer films, particular in the fabrication of architectural glass elements, such as those used in Insulated Glass Units (IGUs). The lamination transfer films may be used to transfer functional layers and structures. The lamination transfer films may include a support film that can be removed during the transfer process, and the transferred materials are primarily inorganic. The resulting transferred structures on glass generally have high photo- and thermal-stability, and therefore can successfully be applied to the glass surfaces that are interior to the cavity within an IGU. The lamination transfer films can also be patterned such that macroscopic patterns of microoptical elements can be applied on a glass surface.Type: GrantFiled: November 14, 2019Date of Patent: October 6, 2020Assignee: 3M INNOVATIVE PROPERTIES COMPANYInventors: Michael Benton Free, Martin B. Wolk, Olester Benson, Jr., Bing Hao, Charles A. Marttila, Craig R. Schardt, Mieczyslaw H. Mazurek, Justin P. Meyer, Manoj Nirmal
-
Publication number: 20200157878Abstract: The present disclosure provides lamination transfer films and use of the lamination transfer films, particular in the fabrication of architectural glass elements, such as those used in Insulated Glass Units (IGUs). The lamination transfer films may be used to transfer functional layers and structures. The lamination transfer films may include a support film that can be removed during the transfer process, and the transferred materials are primarily inorganic. The resulting transferred structures on glass generally have high photo- and thermal-stability, and therefore can successfully be applied to the glass surfaces that are interior to the cavity within an IGU. The lamination transfer films can also be patterned such that macroscopic patterns of microoptical elements can be applied on a glass surface.Type: ApplicationFiled: January 23, 2020Publication date: May 21, 2020Inventors: Michael Benton Free, Martin B. Wolk, Olester Benson, JR., Bing Hao, Charles A. Marttila, Craig R. Schardt, Mieczyslaw H. Mazurek, Justin P. Meyer, Manoj Nirmal