Patents by Inventor Martin Christopher Holland

Martin Christopher Holland has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12193318
    Abstract: A method includes placing a first charged metal dot on a first position of a surface of a semiconductor substrate. A first charged region is formed on a second position of the surface of the semiconductor substrate. A precursor gas is flowed along a first direction from the first position toward the second position on the semiconductor substrate, thereby forming a first carbon nanotube (CNT) on the semiconductor substrate. A dielectric layer is deposited to cover the first CNT and the semiconductor substrate. A second charged metal dot is placed on a third position of a surface of the dielectric layer. A second charged region is formed on a fourth position of the surface of the dielectric layer. The precursor gas is flowed along a second direction from the third position toward the fourth position on the semiconductor substrate, thereby forming a second CNT on the first CNT.
    Type: Grant
    Filed: March 7, 2022
    Date of Patent: January 7, 2025
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Martin Christopher Holland, Timothy Vasen, Blandine Duriez
  • Publication number: 20240339537
    Abstract: A semiconductor device includes a fin protruding upwardly from a substrate. The fin includes a first sidewall and an opposing second sidewall and a top surface extending between the first and second sidewalls. The semiconductor device also includes a two-dimensional material layer disposed on the first and second sidewalls of the fin without being disposed on the top surface of the fin, and a gate stack disposed on the fin. The gate stack contacts a channel region defined in the two-dimensional material layer. The two-dimensional material layer includes a flat portion extending laterally away from the fin.
    Type: Application
    Filed: June 17, 2024
    Publication date: October 10, 2024
    Inventors: Mark van Dal, Martin Christopher Holland, Matthias Passlack
  • Patent number: 12051702
    Abstract: A crystalline channel layer of a semiconductor material is formed in a backend process over a crystalline dielectric seed layer. A crystalline magnesium oxide MgO is formed over an amorphous inter-layer dielectric layer. The crystalline MgO provides physical link to the formation of a crystalline semiconductor layer thereover.
    Type: Grant
    Filed: February 10, 2023
    Date of Patent: July 30, 2024
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Matthias Passlack, Blandine Duriez, Georgios Vellianitis, Gerben Doornbos, Marcus Johannes Henricus Van Dal, Martin Christopher Holland, Mauricio Manfrini
  • Patent number: 12027592
    Abstract: A field effect transistor includes a channel made of germanium and a source/drain portion. The source/drain portion includes a germanium layer, an interfacial epitaxial layer over the germanium layer, a semiconductor layer over the interfacial epitaxial layer, and a conducting layer over the semiconductor layer. The interfacial epitaxial layer contains germanium and an element from the semiconductor layer and has a thickness in a range from about 1 nm to about 3 nm.
    Type: Grant
    Filed: June 27, 2022
    Date of Patent: July 2, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Martin Christopher Holland, Blandine Duriez
  • Publication number: 20240204106
    Abstract: In an embodiment, a device includes: a semiconductor substrate having a channel region; a gate stack over the channel region; and an epitaxial source/drain region adjacent the gate stack, the epitaxial source/drain region including: a main portion in the semiconductor substrate, the main portion including a semiconductor material doped with gallium, a first concentration of gallium in the main portion being less than the solid solubility of gallium in the semiconductor material; and a finishing portion over the main portion, the finishing portion doped with gallium, a second concentration of gallium in the finishing portion being greater than the solid solubility of gallium in the semiconductor
    Type: Application
    Filed: February 28, 2024
    Publication date: June 20, 2024
    Inventors: Martin Christopher Holland, Blandine Duriez, Marcus Johannes Henricus van Dal, Yasutoshi Okuno
  • Patent number: 12015083
    Abstract: Various methods for fabricating non-planar integrated circuit devices, such as FinFET devices, are disclosed herein. An exemplary method includes forming a rib structure extending from a substrate; forming a two-dimensional material layer (including, for example, transition metal dichalcogenide or graphene) on the rib structure and the substrate; patterning the two-dimensional material layer, such that the two-dimensional material layer is disposed on at least one surface of the rib structure; and forming a gate on the two-dimensional material layer. In some implementations, a channel region, a source region, and a drain region are defined in the two-dimensional material layer. The channel region is disposed between the source region and the drain region, where the gate is disposed over the channel region. In some implementations, the patterning includes removing the two-dimensional material layer disposed on a top surface of the substrate and/or disposed on a top surface of the rib structure.
    Type: Grant
    Filed: March 1, 2021
    Date of Patent: June 18, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Mark van Dal, Martin Christopher Holland, Matthias Passlack
  • Patent number: 11967647
    Abstract: A method of forming a semiconductor device includes forming source/drain contact openings extending through at least one dielectric layer to expose source/drain contact regions of source/drain structures. The method further includes forming conductive plugs in the source/drain contact openings. The method further includes depositing a light blocking layer over the conductive plugs and the at least one dielectric layer. The method further includes etching the light blocking layer to expose the conductive plugs. The method further includes directing a laser irradiation to the conductive plugs and the light blocking layer. The laser irradiation is configured to activate dopants in the source/drain contact regions.
    Type: Grant
    Filed: June 28, 2021
    Date of Patent: April 23, 2024
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Blandine Duriez, Marcus Johannes Henricus Van Dal, Martin Christopher Holland, Gerben Doornbos, Georgios Vellianitis
  • Patent number: 11949013
    Abstract: In an embodiment, a device includes: a semiconductor substrate having a channel region; a gate stack over the channel region; and an epitaxial source/drain region adjacent the gate stack, the epitaxial source/drain region including: a main portion in the semiconductor substrate, the main portion including a semiconductor material doped with gallium, a first concentration of gallium in the main portion being less than the solid solubility of gallium in the semiconductor material; and a finishing portion over the main portion, the finishing portion doped with gallium, a second concentration of gallium in the finishing portion being greater than the solid solubility of gallium in the semiconductor material.
    Type: Grant
    Filed: January 31, 2022
    Date of Patent: April 2, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Martin Christopher Holland, Blandine Duriez, Marcus Johannes Henricus van Dal, Yasutoshi Okuno
  • Patent number: 11908922
    Abstract: A semiconductor structure includes a substrate, a first epitaxial layer, a second epitaxial layer, and a transistor. The substrate includes a first pyramid protrusion, a second pyramid protrusion, a third pyramid protrusion, and a fourth pyramid protrusion. The first and second pyramid protrusions are arranged along a first direction, the second and fourth pyramid protrusions are arranged along the first direction, and the first and third pyramid protrusions are arranged along a second direction crossing the first direction. The first epitaxial layer is over the substrate and in contact with the first, second, third, and fourth pyramid protrusions. The second epitaxial layer is over the first epitaxial layer. The transistor is over the second epitaxial layer.
    Type: Grant
    Filed: October 26, 2020
    Date of Patent: February 20, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Carlos H. Diaz, Mark Van Dal, Martin Christopher Holland
  • Publication number: 20240030027
    Abstract: A semiconductor device is provided. The semiconductor device includes a template layer disposed over a substrate and having a trench therein, a buffer structure disposed over a bottom surface of the trench and comprising a metal oxide, a single crystal semiconductor structure disposed within the trench and over the buffer structure and a gate structure disposed over a channel region of the single crystal semiconductor structure.
    Type: Application
    Filed: October 3, 2023
    Publication date: January 25, 2024
    Inventor: Martin Christopher HOLLAND
  • Patent number: 11848385
    Abstract: A method of forming a semiconductor device includes forming source/drain contact openings extending through at least one dielectric layer to expose source/drain contact regions of source/drain structures. The method further includes depositing a light blocking layer along sidewalls and bottom surfaces of the source/drain contact openings and a topmost surface of the at least one dielectric layer. The method further includes performing a laser annealing process to activate dopants in the source/drain contact region. The method further includes forming source/drain contact structures within source/drain contact openings.
    Type: Grant
    Filed: March 28, 2022
    Date of Patent: December 19, 2023
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Blandine Duriez, Marcus Johannes Henricus Van Dal, Martin Christopher Holland, Gerben Doornbos, Georgios Vellianitis
  • Publication number: 20230387306
    Abstract: In a method of manufacturing a semiconductor device, an opening is formed in an interlayer dielectric layer such that a source/drain region is exposed in the opening. A first semiconductor layer is formed to fully cover the exposed source/drain region within the opening. A heating process is performed to make an upper surface of the first semiconductor layer substantially flat. A conductive contact layer is formed over the first semiconductor layer.
    Type: Application
    Filed: August 10, 2023
    Publication date: November 30, 2023
    Inventors: Blandine DURIEZ, Mark van DaL, Martin Christopher HOLLAND, Gerben DOORNBOS
  • Patent number: 11830947
    Abstract: In a method of manufacturing a semiconductor device, an opening is formed in an interlayer dielectric layer such that a source/drain region is exposed in the opening. A first semiconductor layer is formed to fully cover the exposed source/drain region within the opening. A heating process is performed to make an upper surface of the first semiconductor layer substantially flat. A conductive contact layer is formed over the first semiconductor layer.
    Type: Grant
    Filed: April 18, 2022
    Date of Patent: November 28, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Blandine Duriez, Mark van Dal, Martin Christopher Holland, Gerben Doornbos
  • Publication number: 20230377961
    Abstract: Metal nitride diffusion barriers may be included between cobalt-based structures and ruthenium-based structures to reduce, minimize, and/or prevent intermixing of cobalt into ruthenium. A metal nitride diffusion barrier layer may include a cobalt nitride (CoNx), a ruthenium nitride (RuNx), or another metal nitride that has a bond dissociation energy greater than the bond dissociation energy of cobalt to cobalt (Co—Co), and may therefore function as a strong barrier to cobalt migration and diffusion into ruthenium. Moreover, cobalt nitride and ruthenium nitride have lower resistivity relative to other materials such as titanium nitride (TiN), tungsten nitride (WN), and tantalum nitride (TaN). In this way, the metal nitride diffusion barriers are capable of minimizing cobalt diffusion and intermixing into ruthenium-based interconnect structures while maintaining a low contact resistance for the interconnect structures.
    Type: Application
    Filed: August 2, 2023
    Publication date: November 23, 2023
    Inventor: Martin Christopher HOLLAND
  • Publication number: 20230361202
    Abstract: In a method of manufacturing a semiconductor device, a dummy gate structure is formed over a channel region of a semiconductor layer, a source/drain epitaxial layer is formed on opposing sides of the dummy gate structure, a planarization operation is performed on the source/drain epitaxial layer, the planarized source/drain epitaxial layer is patterned, the dummy gate structure is removed to form a gate space, and a metal gate structure is formed in the gate space.
    Type: Application
    Filed: July 20, 2023
    Publication date: November 9, 2023
    Inventors: Blandine DURIEZ, Georgios Vellianitis, Gerben Doornbos, Marcus Johannes Henricus, Martin Christopher Holland, Timothy Vasen
  • Patent number: 11784045
    Abstract: A semiconductor device is provided. The semiconductor device includes a template layer disposed over a substrate and having a trench therein, a buffer structure disposed over a bottom surface of the trench and comprising a metal oxide, a single crystal semiconductor structure disposed within the trench and over the buffer structure and a gate structure disposed over a channel region of the single crystal semiconductor structure.
    Type: Grant
    Filed: January 6, 2022
    Date of Patent: October 10, 2023
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventor: Martin Christopher Holland
  • Patent number: 11764289
    Abstract: In a method of manufacturing a semiconductor device, a dummy gate structure is formed over a channel region of a semiconductor layer, a source/drain epitaxial layer is formed on opposing sides of the dummy gate structure, a planarization operation is performed on the source/drain epitaxial layer, the planarized source/drain epitaxial layer is patterned, the dummy gate structure is removed to form a gate space, and a metal gate structure is formed in the gate space.
    Type: Grant
    Filed: May 10, 2021
    Date of Patent: September 19, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Blandine Duriez, Georgios Vellianitis, Gerben Doornbos, Marcus Johannes Henricus Van Dal, Martin Christopher Holland, Timothy Vasen
  • Patent number: 11721721
    Abstract: Provided herein are semiconductor structures that include germanium and have a germanium nitride layer on the surface, as well as methods of forming the same. The described structures include nanowires and fins. Methods of the disclosure include metal-organic chemical vapor deposition with a germanium precursor. The described methods also include using a N2H4 vapor.
    Type: Grant
    Filed: June 7, 2021
    Date of Patent: August 8, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Martin Christopher Holland, Georgios Vellianitis
  • Publication number: 20230197445
    Abstract: A crystalline channel layer of a semiconductor material is formed in a backend process over a crystalline dielectric seed layer. A crystalline magnesium oxide MgO is formed over an amorphous inter-layer dielectric layer. The crystalline MgO provides physical link to the formation of a crystalline semiconductor layer thereover.
    Type: Application
    Filed: February 10, 2023
    Publication date: June 22, 2023
    Inventors: Matthias Passlack, Blandine Duriez, Georgios Vellianitis, Gerben Doornbos, Marcus Johannes Henricus Van Dal, Martin Christopher Holland, Mauricio Manfrini
  • Patent number: 11626507
    Abstract: In a method of manufacturing a semiconductor device, a gate structure is formed over a fin structure. A source/drain region of the fin structure is recessed. A first semiconductor layer is formed over the recessed source/drain region. A second semiconductor layer is formed over the first semiconductor layer. The fin structure is made of SixGe1-x, where 0?x?0.3, the first semiconductor layer is made of SiyGe1-y, where 0.45?y?1.0, and the second semiconductor layer is made of SizGe1-z, where 0?z?0.3.
    Type: Grant
    Filed: March 29, 2019
    Date of Patent: April 11, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Martin Christopher Holland, Marcus Johannes Henricus Van Dal