Patents by Inventor Martin Christopher Holland

Martin Christopher Holland has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220328633
    Abstract: A field effect transistor includes a channel made of germanium and a source/drain portion. The source/drain portion includes a germanium layer, an interfacial epitaxial layer over the germanium layer, a semiconductor layer over the interfacial epitaxial layer, and a conducting layer over the semiconductor layer. The interfacial epitaxial layer contains germanium and an element from the semiconductor layer and has a thickness in a range from about 1 nm to about 3 nm.
    Type: Application
    Filed: June 27, 2022
    Publication date: October 13, 2022
    Inventors: Martin Christopher HOLLAND, Blandine DURIEZ
  • Publication number: 20220246753
    Abstract: In a method of manufacturing a semiconductor device, an opening is formed in an interlayer dielectric layer such that a source/drain region is exposed in the opening. A first semiconductor layer is formed to fully cover the exposed source/drain region within the opening. A heating process is performed to make an upper surface of the first semiconductor layer substantially flat. A conductive contact layer is formed over the first semiconductor layer.
    Type: Application
    Filed: April 18, 2022
    Publication date: August 4, 2022
    Inventors: Blandine DURIEZ, Mark van DAL, Martin Christopher HOLLAND, Gerben DOORNBOS
  • Publication number: 20220223744
    Abstract: A method of forming a semiconductor device includes forming source/drain contact openings extending through at least one dielectric layer to expose source/drain contact regions of source/drain structures. The method further includes depositing a light blocking layer along sidewalls and bottom surfaces of the source/drain contact openings and a topmost surface of the at least one dielectric layer. The method further includes performing a laser annealing process to activate dopants in the source/drain contact region. The method further includes forming source/drain contact structures within source/drain contact openings.
    Type: Application
    Filed: March 28, 2022
    Publication date: July 14, 2022
    Inventors: Blandine Duriez, Marcus Johannes Henricus Van Dal, Martin Christopher Holland, Gerben Doornbos, Georgios Vellianitis
  • Patent number: 11374095
    Abstract: A field effect transistor includes a channel made of germanium and a source/drain portion. The source/drain portion includes a germanium layer, an interfacial epitaxial layer over the germanium layer, a semiconductor layer over the interfacial epitaxial layer, and a conducting layer over the semiconductor layer. The interfacial epitaxial layer contains germanium and an element from the semiconductor layer and has a thickness in a range from about 1 nm to about 3 nm.
    Type: Grant
    Filed: November 23, 2020
    Date of Patent: June 28, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Martin Christopher Holland, Blandine Duriez
  • Publication number: 20220190252
    Abstract: A method includes placing a first charged metal dot on a first position of a surface of a semiconductor substrate. A first charged region is formed on a second position of the surface of the semiconductor substrate. A precursor gas is flowed along a first direction from the first position toward the second position on the semiconductor substrate, thereby forming a first carbon nanotube (CNT) on the semiconductor substrate. A dielectric layer is deposited to cover the first CNT and the semiconductor substrate. A second charged metal dot is placed on a third position of a surface of the dielectric layer. A second charged region is formed on a fourth position of the surface of the dielectric layer. The precursor gas is flowed along a second direction from the third position toward the fourth position on the semiconductor substrate, thereby forming a second CNT on the first CNT.
    Type: Application
    Filed: March 7, 2022
    Publication date: June 16, 2022
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Martin Christopher HOLLAND, Timothy VASEN, Blandine DURIEZ
  • Publication number: 20220157991
    Abstract: In an embodiment, a device includes: a semiconductor substrate having a channel region; a gate stack over the channel region; and an epitaxial source/drain region adjacent the gate stack, the epitaxial source/drain region including: a main portion in the semiconductor substrate, the main portion including a semiconductor material doped with gallium, a first concentration of gallium in the main portion being less than the solid solubility of gallium in the semiconductor material; and a finishing portion over the main portion, the finishing portion doped with gallium, a second concentration of gallium in the finishing portion being greater than the solid solubility of gallium in the semiconductor material.
    Type: Application
    Filed: January 31, 2022
    Publication date: May 19, 2022
    Inventors: Martin Christopher Holland, Blandine Duriez, Marcus Johannes Henricus van Dal, Yasutoshi Okuno
  • Publication number: 20220130669
    Abstract: A semiconductor device is provided. The semiconductor device includes a template layer disposed over a substrate and having a trench therein, a buffer structure disposed over a bottom surface of the trench and comprising a metal oxide, a single crystal semiconductor structure disposed within the trench and over the buffer structure and a gate structure disposed over a channel region of the single crystal semiconductor structure.
    Type: Application
    Filed: January 6, 2022
    Publication date: April 28, 2022
    Inventor: Martin Christopher Holland
  • Patent number: 11309417
    Abstract: In a method of manufacturing a semiconductor device, an opening is formed in an interlayer dielectric layer such that a source/drain region is exposed in the opening. A first semiconductor layer is formed to fully cover the exposed source/drain region within the opening. A heating process is performed to make an upper surface of the first semiconductor layer substantially flat. A conductive contact layer is formed over the first semiconductor layer.
    Type: Grant
    Filed: March 29, 2019
    Date of Patent: April 19, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Blandine Duriez, Mark van Dal, Martin Christopher Holland, Gerben Doornbos
  • Patent number: 11302820
    Abstract: A method of forming a semiconductor device includes forming source/drain contact openings extending through at least one dielectric layer to expose source/drain contact regions of source/drain structures. The method further includes depositing a light blocking layer along sidewalls and bottom surfaces of the source/drain contact openings and a topmost surface of the at least one dielectric layer. The method further includes performing a laser annealing process to activate dopants in the source/drain contact region. The method further includes forming source/drain contact structures within source/drain contact openings.
    Type: Grant
    Filed: September 27, 2019
    Date of Patent: April 12, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Blandine Duriez, Marcus Johannes Henricus Van Dal, Martin Christopher Holland, Gerben Doornbos, Georgios Vellianitis
  • Patent number: 11271163
    Abstract: In a method, a charged metal dot is deposited on a first position of a surface of a semiconductor substrate. Then, a charged region is formed on a second position of the surface of the semiconductor substrate, thereby establishing of which an electric field direction from the first position toward the second position. The first position is spaced apart from the second position by a distance. Thereafter, a precursor gas flows along the electric field direction on the semiconductor substrate, thereby forming a carbon nanotube (CNT) on the semiconductor substrate.
    Type: Grant
    Filed: April 18, 2019
    Date of Patent: March 8, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Martin Christopher Holland, Timothy Vasen, Blandine Duriez
  • Patent number: 11251042
    Abstract: A method of forming a semiconductor structure is provided. The method includes etching a trench in a template layer over a substrate, forming a seed structure over a bottom surface of the trench, forming a dielectric cap over the seed structure, and growing a single crystal semiconductor structure within the trench using a vapor liquid solid epitaxy growth process. The single crystal semiconductor structure is grown from a liquid-solid interface between the seed structure and the bottom surface of the trench.
    Type: Grant
    Filed: October 31, 2019
    Date of Patent: February 15, 2022
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventor: Martin Christopher Holland
  • Patent number: 11239368
    Abstract: In an embodiment, a device includes: a semiconductor substrate having a channel region; a gate stack over the channel region; and an epitaxial source/drain region adjacent the gate stack, the epitaxial source/drain region including: a main portion in the semiconductor substrate, the main portion including a semiconductor material doped with gallium, a first concentration of gallium in the main portion being less than the solid solubility of gallium in the semiconductor material; and a finishing portion over the main portion, the finishing portion doped with gallium, a second concentration of gallium in the finishing portion being greater than the solid solubility of gallium in the semiconductor material.
    Type: Grant
    Filed: March 2, 2020
    Date of Patent: February 1, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Martin Christopher Holland, Blandine Duriez, Marcus Johannes Henricus van Dal, Yasutoshi Okuno
  • Patent number: 11158807
    Abstract: A field effect transistor includes a semiconductor substrate, a first pad layer, carbon nanotubes and a gate structure. The first pad layer is disposed over the semiconductor substrate and comprises a 2D material. The carbon nanotubes are disposed over the first insulating pad layer. The gate structure is disposed over the semiconductor substrate and is vertically stacked with the carbon nanotubes. The carbon nanotubes extend from one side to an opposite side of the gate structure.
    Type: Grant
    Filed: October 18, 2019
    Date of Patent: October 26, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Timothy Vasen, Chao-Ching Cheng, Matthias Passlack, Martin Christopher Holland, Tse-An Chen, Lain-Jong Li
  • Publication number: 20210328068
    Abstract: A method of forming a semiconductor device includes forming source/drain contact openings extending through at least one dielectric layer to expose source/drain contact regions of source/drain structures. The method further includes forming conductive plugs in the source/drain contact openings. The method further includes depositing a light blocking layer over the conductive plugs and the at least one dielectric layer. The method further includes etching the light blocking layer to expose the conductive plugs. The method further includes directing a laser irradiation to the conductive plugs and the light blocking layer. The laser irradiation is configured to activate dopants in the source/drain contact regions.
    Type: Application
    Filed: June 28, 2021
    Publication date: October 21, 2021
    Inventors: Blandine Duriez, Marcus Johannes Henricus Van Dal, Martin Christopher Holland, Gerben Doornbos, Georgios Vellianitis
  • Publication number: 20210296442
    Abstract: Provided herein are semiconductor structures that include germanium and have a germanium nitride layer on the surface, as well as methods of forming the same. The described structures include nanowires and fins. Methods of the disclosure include metal-organic chemical vapor deposition with a germanium precursor. The described methods also include using a N2H4 vapor.
    Type: Application
    Filed: June 7, 2021
    Publication date: September 23, 2021
    Inventors: Martin Christopher Holland, Georgios Vellianitis
  • Publication number: 20210265490
    Abstract: In a method of manufacturing a semiconductor device, a dummy gate structure is formed over a channel region of a semiconductor layer, a source/drain epitaxial layer is formed on opposing sides of the dummy gate structure, a planarization operation is performed on the source/drain epitaxial layer, the planarized source/drain epitaxial layer is patterned, the dummy gate structure is removed to form a gate space, and a metal gate structure is formed in the gate space.
    Type: Application
    Filed: May 10, 2021
    Publication date: August 26, 2021
    Inventors: Blandine DURIEZ, Georgios VELLIANITIS, Gerben DOORNBOS, Marcus Johannes Henricus VAN DAL, Martin Christopher HOLLAND, Timothy VASEN
  • Publication number: 20210225647
    Abstract: A crystalline channel layer of a semiconductor material is formed in a backend process over a crystalline dielectric seed layer. A crystalline magnesium oxide MgO is formed over an amorphous inter-layer dielectric layer. The crystalline MgO provides physical link to the formation of a crystalline semiconductor layer thereover.
    Type: Application
    Filed: April 7, 2021
    Publication date: July 22, 2021
    Inventors: Matthias Passlack, Blandine Duriez, Georgios Vellianitis, Gerben Doornbos, Marcus Johannes Henricus Van Dal, Martin Christopher Holland, Mauricio Manfrini
  • Patent number: 11069813
    Abstract: A method of forming a semiconductor device includes forming source/drain contact openings extending through at least one dielectric layer to expose source/drain contact regions of source/drain structures. The method further includes forming conductive plugs in the source/drain contact openings. The method further includes depositing a light blocking layer over the conductive plugs and the at least one dielectric layer. The method further includes etching the light blocking layer to expose the conductive plugs. The method further includes directing a laser irradiation to the conductive plugs and the light blocking layer. The laser irradiation is configured to activate dopants in the source/drain contact regions.
    Type: Grant
    Filed: September 30, 2019
    Date of Patent: July 20, 2021
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Blandine Duriez, Marcus Johannes Henricus Van Dal, Martin Christopher Holland, Gerben Doornbos, Georgios Vellianitis
  • Publication number: 20210184029
    Abstract: Various methods for fabricating non-planar integrated circuit devices, such as FinFET devices, are disclosed herein. An exemplary method includes forming a rib structure extending from a substrate; forming a two-dimensional material layer (including, for example, transition metal dichalcogenide or graphene) on the rib structure and the substrate; patterning the two-dimensional material layer, such that the two-dimensional material layer is disposed on at least one surface of the rib structure; and forming a gate on the two-dimensional material layer. In some implementations, a channel region, a source region, and a drain region are defined in the two-dimensional material layer. The channel region is disposed between the source region and the drain region, where the gate is disposed over the channel region. In some implementations, the patterning includes removing the two-dimensional material layer disposed on a top surface of the substrate and/or disposed on a top surface of the rib structure.
    Type: Application
    Filed: March 1, 2021
    Publication date: June 17, 2021
    Inventors: Mark van Dal, Martin Christopher Holland, Matthias Passlack
  • Patent number: 11031468
    Abstract: Provided herein are semiconductor structures that include germanium and have a germanium nitride layer on the surface, as well as methods of forming the same. The described structures include nanowires and fins. Methods of the disclosure include metal-organic chemical vapor deposition with a germanium precursor. The described methods also include using a N2H4 vapor.
    Type: Grant
    Filed: December 20, 2019
    Date of Patent: June 8, 2021
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Martin Christopher Holland, Georgios Vellianitis