Patents by Inventor Martin E. Fermann

Martin E. Fermann has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160317228
    Abstract: The present disclosure relates to a methods and systems for high speed laser surgery. In some implementations, the combination of mid-infrared (mid-IR) laser radiation with micro-scanning technology allows for large tissue ablation rates with minimal thermally affected zones, where micro-scanning distributes the heat generated by laser surgery over a large tissue area. Micro-scanning technology is compatible with hollow core fiber technology which can be implemented to deliver near diffraction limited mid-IR laser beams into the vicinity of the target area. Micro-scanning technology is compatible with hand tools for direct replacement of mechanical surgical tools such as scalpels as well as robotic surgery. Micro-scanning technology is also compatible with endoscopic beam delivery and can be combined with endoscopic tissue analysis. Tissue analysis can be performed with optical imaging technology as well as other analytical tools such as mass spectrometers.
    Type: Application
    Filed: July 12, 2016
    Publication date: November 3, 2016
    Inventors: Martin E. Fermann, Christopher J. Hensley
  • Publication number: 20160291247
    Abstract: Various embodiments include large cores fibers that can propagate few modes or a single mode while introducing loss to higher order modes. Some of these fibers are holey fibers that comprise cladding features such as air-holes. Additional embodiments described herein include holey rods. The rods and fibers may be used in many optical systems including optical amplification systems, lasers, short pulse generators, Q-switched lasers, etc. and may be used for example for micromachining.
    Type: Application
    Filed: February 12, 2016
    Publication date: October 6, 2016
    Inventors: Liang Dong, William Wong, Martin E. Fermann
  • Patent number: 9450371
    Abstract: A laser utilizes a cavity design which allows the stable generation of high peak power pulses from mode-locked multi-mode fiber lasers, greatly extending the peak power limits of conventional mode-locked single-mode fiber lasers. Mode-locking may be induced by insertion of a saturable absorber into the cavity and by inserting one or more mode-filters to ensure the oscillation of the fundamental mode in the multi-mode fiber. The probability of damage of the absorber may be minimized by the insertion of an additional semiconductor optical power limiter into the cavity.
    Type: Grant
    Filed: September 14, 2015
    Date of Patent: September 20, 2016
    Assignee: IMRA AMERICA, INC.
    Inventor: Martin E. Fermann
  • Publication number: 20160245989
    Abstract: This disclosure relates to polarizing optical fibers and polarization maintaining optical fibers, including active and/or passive implementations. An embodiment includes a polarizing (PZ) optical fiber that includes stress applying parts (SAPs) disposed in a first cladding region, the SAPs comprising a material with a thermal expansion coefficient, ?SAP. A core region is at least partially surrounded by cladding features and the SAPs. The core includes glass with a thermal expansion coefficient, ?core. The arrangement of the SAPs satisfies: Rsc=dSAP/Dsc, where Dsc is the SAP center to core center distance, and dSAP is the average SAP diameter, and d?=|?SAP??core|, and where Rsc and d? may be sufficiently large to induce stress birefringence into the core and to provide for polarized output. Active fibers in which a portion of the fiber is doped may be implemented for application in fiber lasers, fiber amplifiers, and/or optical pulse compressors.
    Type: Application
    Filed: May 4, 2016
    Publication date: August 25, 2016
    Inventors: Shigeru Suzuki, Hugh A. McKay, Martin E. Fermann
  • Publication number: 20160248217
    Abstract: Examples of robust self-starting passively mode locked fiber oscillators are described. In certain implementations, the oscillators are configured as Fabry-Perot cavities containing an optical loop mirror on one cavity end and a bulk mirror or saturable absorber on the other end. The loop mirror can be further configured with an adjustable line phase delay to optimize modelocking. All intra-cavity fiber(s) can be polarization maintaining. Dispersion compensation components such as, e.g., dispersion compensation fibers, bulk diffraction gratings or fiber Bragg gratings may be included. The oscillators may include a bandpass filter to obtain high pulse energies when operating in the similariton regime. The oscillator output can be amplified and used whenever high power short pulses are required. For example the oscillators can be configured as frequency comb sources or supercontinuum sources. In conjunction with repetition rate modulation, applications include dual scanning delay lines and trace gas detection.
    Type: Application
    Filed: May 4, 2016
    Publication date: August 25, 2016
    Inventor: Martin E. Fermann
  • Patent number: 9401579
    Abstract: Modelocked fiber laser resonators may be coupled with optical amplifiers. An isolator optionally may separate the resonator from the amplifier. A reflective optical element on one end of the resonator having a relatively low reflectivity may be employed to couple light from the resonator to the amplifier. Enhanced pulse-width control may be provided with concatenated sections of both polarization-maintaining and non-polarization-maintaining fibers. Apodized fiber Bragg gratings and integrated fiber polarizers may also be included in the laser cavity to assist in linearly polarizing the output of the cavity. Very short pulses with a large optical bandwidth may be obtained by matching the dispersion value of the grating to the inverse of the dispersion of the intra-cavity fiber. Frequency comb sources may be constructed from such modelocked fiber oscillators. Low dispersion and an in-line interferometer that provides feedback may assist in controlling the frequency components output from the comb source.
    Type: Grant
    Filed: November 26, 2013
    Date of Patent: July 26, 2016
    Assignee: IMRA America, Inc.
    Inventors: Martin E. Fermann, Ingmar Hartl, Gennady Imeshev
  • Publication number: 20160164247
    Abstract: A laser utilizes a cavity design which allows the stable generation of high peak power pulses from mode-locked multi-mode fiber lasers, greatly extending the peak power limits of conventional mode-locked single-mode fiber lasers. Mode-locking may be induced by insertion of a saturable absorber into the cavity and by inserting one or more mode-filters to ensure the oscillation of the fundamental mode in the multi-mode fiber. The probability of damage of the absorber may be minimized by the insertion of an additional semiconductor optical power limiter into the cavity.
    Type: Application
    Filed: March 24, 2014
    Publication date: June 9, 2016
    Applicant: IMRA America, Inc.
    Inventors: Martin E. Fermann, Donald J. Harter
  • Publication number: 20160153835
    Abstract: Systems and methods for high resolution and high sensitivity spectroscopy are disclosed. High resolution can be obtained in conjunction with comb sources via comb resolved spectroscopy. For example, Fourier transform spectroscopy with a scan range larger than a cavity round trip time of the comb sources can be used to obtain comb resolution, where it may be useful to match the comb lines of the source with the sampling points of the Fourier transform spectrometer. High sensitivity can be obtained using multiple passes through a gas cell, cavity enhanced spectroscopy, cavity ring-down spectroscopy, or photo-acoustic spectroscopy. Fiber or solid-state lasers as well as semiconductor or quantum cascade based lasers can be used as comb injection sources. These sources can also be combined with nonlinear frequency broadening techniques via supercontinuum generation, DFG, OPOs or OPAs.
    Type: Application
    Filed: November 5, 2015
    Publication date: June 2, 2016
    Inventors: Kevin F. Lee, Martin E. Fermann
  • Patent number: 9354485
    Abstract: The present invention relates to frequency rulers. At least one embodiment includes a mode locked pump source operated at pulse repetition rate, and a pump output having a pump carrier envelope offset frequency. A nonlinear optical system outputs a frequency ruler spectrum comprising individual frequency modes. The frequency modes may be characterized by a frequency spacing which is an integer multiple of the repetition rate and by distinct ruler carrier envelope offset frequencies which exhibit at least one discontinuity across the frequency output. The ruler carrier envelope offset frequencies are substantially locked to the carrier envelope offset frequency of the pump laser. One preferred embodiment includes a frequency doubled, doubly resonant, non-degenerate OPO (DNOPO), a supercontinuum generation (SC) stage and at least one reference laser arranged downstream from a Tm fiber-based pump source. A plurality of beat signals generated therefrom provide for stabilization of the system.
    Type: Grant
    Filed: April 30, 2013
    Date of Patent: May 31, 2016
    Assignee: IMRA AMERICA, INC.
    Inventors: Martin E. Fermann, Ingmar Hartl
  • Publication number: 20160099537
    Abstract: Compact high brightness light sources for the mid and far IR spectral region, and exemplary applications are disclosed based on passively mode locked Tm fiber comb lasers. In at least one embodiment the coherence of the comb sources is increased in a system utilizing an amplified single-frequency laser to pump the Tm fiber comb laser. The optical bandwidth generated by the passively mode locked Tm fiber comb laser is further decreased by using simultaneous 2nd and 3rd order dispersion compensation using either appropriate chirped fiber Bragg gratings for dispersion compensation, or fibers with appropriately selected values of 2nd and 3rd order dispersion. Fibers with large anomalous values of third order dispersion, or fibers with large numerical apertures, for example fibers having air-holes formed in the fiber cladding may be utilized.
    Type: Application
    Filed: December 10, 2015
    Publication date: April 7, 2016
    Applicant: IMRA AMERICA, INC.
    Inventor: Martin E. FERMANN
  • Publication number: 20160094008
    Abstract: The invention relates to scanning pulsed laser systems for optical imaging. Coherent dual scanning laser systems (CDSL) are disclosed and some applications thereof. Various alternatives for implementation are illustrated, including highly integrated configurations. In at least one embodiment a coherent dual scanning laser system (CDSL) includes two passively modelocked fiber oscillators. The oscillators are configured to operate at slightly different repetition rates, such that a difference ?fr in repetition rates is small compared to the values fr1 and fr2 of the repetition rates of the oscillators. The CDSL system also includes a non-linear frequency conversion section optically connected to each oscillator. The section includes a non-linear optical element generating a frequency converted spectral output having a spectral bandwidth and a frequency comb comprising harmonics of the oscillator repetition rates.
    Type: Application
    Filed: December 10, 2015
    Publication date: March 31, 2016
    Applicant: IMRA AMERICA, INC.
    Inventors: Martin E. FERMANN, Ingmar HARTL
  • Patent number: 9281650
    Abstract: Various embodiments include large cores fibers that can propagate few modes or a single mode while introducing loss to higher order modes. Some of these fibers are holey fibers that comprise cladding features such as air-holes. Additional embodiments described herein include holey rods. The rods and fibers may be used in many optical systems including optical amplification systems, lasers, short pulse generators, Q-switched lasers, etc. and may be used for example for micromachining.
    Type: Grant
    Filed: October 21, 2014
    Date of Patent: March 8, 2016
    Assignee: IMRA America, Inc.
    Inventors: Liang Dong, William Wong, Martin E. Fermann
  • Publication number: 20160064891
    Abstract: Embodiments described herein include a system for producing ultrashort tunable pulses based on ultra broadband OPA or OPG in nonlinear materials. The system parameters such as the nonlinear material, pump wavelengths, quasi-phase matching periods, and temperatures can be selected to utilize the intrinsic dispersion relations for such material to produce bandwidth limited or nearly bandwidth limited pulse compression. Compact high average power sources of short optical pulses tunable in the wavelength range of 1800 to 2100 nm and after frequency doubling in the wavelength range of 900 to 1050 nm can be used as a pump for the ultra broadband OPA or OPG. In certain embodiments, these short pump pulses are obtained from an Er fiber oscillator at about 1550 nm, amplified in Er fiber, Raman-shifted to 1800 to 2100 nm, stretched in a fiber stretcher, and amplified in Tm-doped fiber.
    Type: Application
    Filed: June 24, 2015
    Publication date: March 3, 2016
    Inventors: Gennady Imeshev, Martin E. Fermann
  • Patent number: 9252554
    Abstract: Compact high brightness light sources for the mid and far IR spectral region, and exemplary applications are disclosed based on passively mode locked Tm fiber comb lasers. In at least one embodiment the coherence of the comb sources is increased in a system utilizing an amplified single-frequency laser to pump the Tm fiber comb laser. The optical bandwidth generated by the passively mode locked Tm fiber comb laser is further decreased by using simultaneous 2nd and 3rd order dispersion compensation using either appropriate chirped fiber Bragg gratings for dispersion compensation, or fibers with appropriately selected values of 2nd and 3rd order dispersion. Fibers with large anomalous values of third order dispersion, or fibers with large numerical apertures, for example fibers having air-holes formed in the fiber cladding may be utilized.
    Type: Grant
    Filed: March 21, 2014
    Date of Patent: February 2, 2016
    Assignee: IMRA AMERICA, INC.
    Inventor: Martin E. Fermann
  • Patent number: 9252560
    Abstract: The invention relates to scanning pulsed laser systems for optical imaging. Coherent dual scanning laser systems (CDSL) are disclosed and some applications thereof. Various alternatives for implementation are illustrated, including highly integrated configurations. In at least one embodiment a coherent dual scanning laser system (CDSL) includes two passively modelocked fiber oscillators. The oscillators are configured to operate at slightly different repetition rates, such that a difference ?fr in repetition rates is small compared to the values fr1 and fr2 of the repetition rates of the oscillators. The CDSL system also includes a non-linear frequency conversion section optically connected to each oscillator. The section includes a non-linear optical element generating a frequency converted spectral output having a spectral bandwidth and a frequency comb comprising harmonics of the oscillator repetition rates.
    Type: Grant
    Filed: April 8, 2014
    Date of Patent: February 2, 2016
    Assignee: IMRA AMERICA, INC.
    Inventors: Martin E. Fermann, Ingmar Hartl
  • Publication number: 20160006208
    Abstract: A laser utilizes a cavity design which allows the stable generation of high peak power pulses from mode-locked multi-mode fiber lasers, greatly extending the peak power limits of conventional mode-locked single-mode fiber lasers. Mode-locking may be induced by insertion of a saturable absorber into the cavity and by inserting one or more mode-filters to ensure the oscillation of the fundamental mode in the multi-mode fiber. The probability of damage of the absorber may be minimized by the insertion of an additional semiconductor optical power limiter into the cavity.
    Type: Application
    Filed: September 14, 2015
    Publication date: January 7, 2016
    Applicant: IMRA AMERICA, INC.
    Inventor: Martin E. Fermann
  • Patent number: 9209592
    Abstract: Embodiments described herein include a system for producing ultrashort tunable pulses based on ultra broadband OPA or OPG in nonlinear materials. The system parameters such as the nonlinear material, pump wavelengths, quasi-phase matching periods, and temperatures can be selected to utilize the intrinsic dispersion relations for such material to produce bandwidth limited or nearly bandwidth limited pulse compression. Compact high average power sources of short optical pulses tunable in the wavelength range of 1800 to 2100 nm and after frequency doubling in the wavelength range of 900 to 1050 nm can be used as a pump for the ultra broadband OPA or OPG. In certain embodiments, these short pump pulses are obtained from an Er fiber oscillator at about 1550 nm, amplified in Er fiber, Raman-shifted to 1800 to 2100 nm, stretched in a fiber stretcher, and amplified in Tm-doped fiber.
    Type: Grant
    Filed: December 14, 2012
    Date of Patent: December 8, 2015
    Assignee: IMRA AMERICA, INC.
    Inventors: Gennady Imeshev, Martin E. Fermann
  • Publication number: 20150325977
    Abstract: A pulsed laser comprises an oscillator and amplifier. An attenuator and/or pre-compressor may be disposed between the oscillator and amplifier to improve performance and possibly the quality of pulses output from the laser. Such pre-compression may be implemented with spectral filters and/or dispersive elements between the oscillator and amplifier. The pulsed laser may have a modular design comprising modular devices that may have Telcordia-graded quality and reliability. Fiber pigtails extending from the device modules can be spliced together to form laser system. In one embodiment, a laser system operating at approximately 1050 nm comprises an oscillator having a spectral bandwidth of approximately 19 nm. This oscillator signal can be manipulated to generate a pulse having a width below approximately 90 fs. A modelocked linear fiber laser cavity with enhanced pulse-width control includes concatenated sections of both polarization-maintaining and non-polarization-maintaining fibers.
    Type: Application
    Filed: April 13, 2015
    Publication date: November 12, 2015
    Inventors: Xinhua Gu, Mark Bendett, Gyu Cheon Cho, Martin E. Fermann
  • Patent number: 9184549
    Abstract: Compact laser systems are disclosed which include ultrafast laser sources in combination with nonlinear crystals or waveguides. In some implementations fiber based mid-IR sources producing very short pulses and/or mid-IR sources based on a mode locked fiber lasers are utilized. A difference frequency generator receives outputs from the ultrafast sources, and generates an output including a difference frequency. The output power from the difference frequency generator can further be enhanced via the implementation of large core dispersion shifted fibers. Exemplary applications of the compact, high brightness mid-IR light sources include medical applications, spectroscopy, ranging, sensing and metrology.
    Type: Grant
    Filed: October 7, 2014
    Date of Patent: November 10, 2015
    Assignee: IMRA AMERICA, INC.
    Inventors: Martin E. Fermann, Ingmar Hartl
  • Publication number: 20150311666
    Abstract: The present invention relates to compact, low noise, ultra-short pulse sources based on fiber amplifiers, and various applications thereof. At least one implementation includes an optical amplification system having a fiber laser seed source producing seed pulses at a repetition rate corresponding to the fiber laser cavity round trip time. A nonlinear pulse transformer, comprising a fiber length greater than about 10 m, receives a seed pulse at its input and produces a spectrally broadened output pulse at its output, the output pulse having a spectral bandwidth which is more than 1.5 times a spectral bandwidth of a seed pulse. A fiber power amplifier receives and amplifies spectrally broadened output pulses. A pulse compressor is configured to temporally compress spectrally broadened pulses amplified by said power amplifier. Applications include micro-machining, ophthalmology, molecular desorption or ionization, mass-spectroscopy, and/or laser-based, biological tissue processing.
    Type: Application
    Filed: October 16, 2013
    Publication date: October 29, 2015
    Applicant: IMRA AMERICA, INC.
    Inventor: Martin E. FERMANN