Patents by Inventor Martin E. Fermann

Martin E. Fermann has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9153929
    Abstract: A laser utilizes a cavity design which allows the stable generation of high peak power pulses from mode-locked multi-mode fiber lasers, greatly extending the peak power limits of conventional mode-locked single-mode fiber lasers. Mode-locking may be induced by insertion of a saturable absorber into the cavity and by inserting one or more mode-filters to ensure the oscillation of the fundamental mode in the multi-mode fiber. The probability of damage of the absorber may be minimized by the insertion of an additional semiconductor optical power limiter into the cavity.
    Type: Grant
    Filed: October 17, 2014
    Date of Patent: October 6, 2015
    Assignee: IMRA AMERICA, INC.
    Inventor: Martin E. Fermann
  • Publication number: 20150255942
    Abstract: By compensating polarization mode-dispersion as well chromatic dispersion in photonic crystal fiber pulse compressors, high pulse energies can be obtained from all-fiber chirped pulse amplification systems. By inducing third-order dispersion in fiber amplifiers via self-phase modulation, the third-order chromatic dispersion from bulk grating pulse compressors can be compensated and the pulse quality of hybrid fiber/bulk chirped pulse amplification systems can be improved. Finally, by amplifying positively chirped pulses in negative dispersion fiber amplifiers, a low noise wavelength tunable seed source via anti-Stokes frequency shifting can be obtained.
    Type: Application
    Filed: May 19, 2015
    Publication date: September 10, 2015
    Applicant: IMRA AMERICA, INC.
    Inventors: Martin E. FERMANN, Gennady IMESHEV, Gyu C. CHO, Zhenlin LIU, Donald J. HARTER
  • Patent number: 9097656
    Abstract: The present invention relates to precision linewidth control and frequency measurements of continuous wave lasers for the near to far IR spectral regions, precision frequency synthesizers and exemplary applications in molecular detection. Methods and systems are disclosed for simultaneous line narrowing of cw lasers, as well as referencing the desired emission wavelength to a frequency comb laser.
    Type: Grant
    Filed: March 27, 2013
    Date of Patent: August 4, 2015
    Assignee: IMRA AMERICA, INC.
    Inventors: Martin E. Fermann, Marco Marangoni, Davide Gatti
  • Publication number: 20150187558
    Abstract: The present invention relates to a mass spectrometer system, which combines laser desorption with pulse bursts comprising a train of ultrashort pulses and electrospray ionization. The pulse separation between individual pulses within the pulse burst is selected such that transient phenomena on an irradiated sample do not fully relax between individual pulses. Pulses with pulse widths ranging from fs to sub ns are conveniently implemented. The pulse widths can be selected to allow for multi-photon excitation of a sample while at the same time minimizing heat accumulation in a sample. Low cost laser systems such as fiber lasers can be configured to generate appropriate pulse bursts. The technique is suitable for mass spectrometry imaging with high spatial resolution. The laser system can serve as an electronic clock to which the whole mass spectrometry system or mass spectrometry imaging system is synchronized.
    Type: Application
    Filed: December 27, 2013
    Publication date: July 2, 2015
    Applicant: IMRA AMERICA, INC.
    Inventors: Andrew A. MILLS, Martin E. FERMANN, Jiahui PENG, Robert J. LEVIS
  • Publication number: 20150185141
    Abstract: The present invention relates to precision linewidth control and frequency measurements of continuous wave lasers for the near to far IR spectral regions, precision frequency synthesizers and exemplary applications in molecular detection. Methods and systems are disclosed for simultaneous line narrowing of cw lasers, as well as referencing the desired emission wavelength to a frequency comb laser.
    Type: Application
    Filed: March 27, 2013
    Publication date: July 2, 2015
    Inventors: Martin E. Fermann, Marco Marangoni, Davide Gatti
  • Patent number: 9071037
    Abstract: A pulsed laser comprises an oscillator and amplifier. An attenuator and/or pre-compressor may be disposed between the oscillator and amplifier to improve performance and possibly the quality of pulses output from the laser. Such pre-compression may be implemented with spectral filters and/or dispersive elements between the oscillator and amplifier. The pulsed laser may have a modular design comprising modular devices that may have Telcordia-graded quality and reliability. Fiber pigtails extending from the device modules can be spliced together to form laser system. In one embodiment, a laser system operating at approximately 1050 nm comprises an oscillator having a spectral bandwidth of approximately 19 nm. This oscillator signal can be manipulated to generate a pulse having a width below approximately 90 fs. A modelocked linear fiber laser cavity with enhanced pulse-width control includes concatenated sections of both polarization-maintaining and non-polarization-maintaining fibers.
    Type: Grant
    Filed: August 28, 2013
    Date of Patent: June 30, 2015
    Assignee: IMRA America, Inc.
    Inventors: Xinhua Gu, Mark Bendett, Gyu Cheon Cho, Martin E. Fermann
  • Publication number: 20150160532
    Abstract: Coherent and compact supercontinuum light sources for the mid IR spectral regime are disclosed and exemplary applications thereof. The supercontinuum generation is based on the use of highly nonlinear fibers or waveguides. In at least one embodiment the coherence of the supercontinuum sources is increased using low noise mode locked short pulse sources. Compact supercontinuum light sources can be constructed with the use of passively mode locked fiber or diode lasers. Wavelength tunable sources can be constructed using appropriate optical filters or frequency conversion sections. Highly coherent supercontinuum sources further facilitate coherent detection schemes and can improve the signal/noise ratio in lock in detection schemes.
    Type: Application
    Filed: January 14, 2015
    Publication date: June 11, 2015
    Applicant: IMRA AMERICA, INC.
    Inventors: Martin E. FERMANN, Ingmar HARTL
  • Patent number: 9042004
    Abstract: By compensating polarization mode-dispersion as well chromatic dispersion in photonic crystal fiber pulse compressors, high pulse energies can be obtained from all-fiber chirped pulse amplification systems. By inducing third-order dispersion in fiber amplifiers via self-phase modulation, the third-order chromatic dispersion from bulk grating pulse compressors can be compensated and the pulse quality of hybrid fiber/bulk chirped pulse amplification systems can be improved. Finally, by amplifying positively chirped pulses in negative dispersion fiber amplifiers, a low noise wavelength tunable seed source via anti-Stokes frequency shifting can be obtained.
    Type: Grant
    Filed: July 8, 2013
    Date of Patent: May 26, 2015
    Assignee: IMRA AMERICA, INC.
    Inventors: Martin E. Fermann, Gennady Imeshev, Gyu C. Cho, Zhenlin Liu, Donald J. Harter
  • Patent number: 8995029
    Abstract: Systems and methods for providing laser texturing of solid substrates are disclosed. The texturing may be used to provide grayscale images obtainable from substrates, which may include steel, aluminum, glass, and silicon. In some embodiments, images may be obtainable from the substrate by modifying the reflective, diffractive, and/or absorptive features of the substrate or the substrate surface by forming random, periodic, and/or semi-periodic micro-structure features on the substrate (or substrate surface) by an ultrafast laser pulse train. The ultrafast pulse train may be modulated in order to vary, for example, optical exposure time, pulse train intensity, laser polarization, laser wavelength, or a combination of the aforementioned. The ultrafast pulse train and the substrate may be scanned with respect to each other to provide different optical energies to different regions of the substrate (or substrate surface).
    Type: Grant
    Filed: March 5, 2014
    Date of Patent: March 31, 2015
    Assignee: IMRA America, Inc.
    Inventors: Lawrence Shah, Martin E. Fermann
  • Publication number: 20150085885
    Abstract: A pulsed laser comprises an oscillator and amplifier. An attenuator and/or pre-compressor may be disposed between the oscillator and amplifier to improve performance and possibly the quality of pulses output from the laser. Such pre-compression may be implemented with spectral filters and/or dispersive elements between the oscillator and amplifier. The pulsed laser may have a modular design comprising modular devices that may have Telcordia-graded quality and reliability. Fiber pigtails extending from the device modules can be spliced together to form laser system. In one embodiment, a laser system operating at approximately 1050 nm comprises an oscillator having a spectral bandwidth of approximately 19 nm. This oscillator signal can be manipulated to generate a pulse having a width below approximately 90 fs. A modelocked linear fiber laser cavity with enhanced pulse-width control includes concatenated sections of both polarization-maintaining and non-polarization-maintaining fibers.
    Type: Application
    Filed: August 28, 2013
    Publication date: March 26, 2015
    Applicant: IMRA America, Inc.
    Inventors: Xinhua Gu, Mark Bendett, Gyu Cheon Cho, Martin E. Fermann
  • Patent number: 8970947
    Abstract: Embodiments of auto-cladded optical fibers are described. The fibers may have a refractive index profile having a small relative refractive index change. For example, the fiber may include an auto-cladded structure having, e.g., a trough or gradient in the refractive index profile. A beam of light propagating in the fiber may be guided, at least in part, with the auto-cladded structure. In some embodiments, the optical fiber may be all glass. In some embodiments, the optical fiber may include a large-core or an ultra large-core.
    Type: Grant
    Filed: December 14, 2010
    Date of Patent: March 3, 2015
    Assignee: IMRA America, Inc.
    Inventors: Martin E. Fermann, Liang Dong, Libin Fu, Hugh A. McKay
  • Publication number: 20150036702
    Abstract: A laser utilizes a cavity design which allows the stable generation of high peak power pulses from mode-locked multi-mode fiber lasers, greatly extending the peak power limits of conventional mode-locked single-mode fiber lasers. Mode-locking may be induced by insertion of a saturable absorber into the cavity and by inserting one or more mode-filters to ensure the oscillation of the fundamental mode in the multi-mode fiber. The probability of damage of the absorber may be minimized by the insertion of an additional semiconductor optical power limiter into the cavity.
    Type: Application
    Filed: October 17, 2014
    Publication date: February 5, 2015
    Applicant: IMRA AMERICA, INC.
    Inventor: Martin E. Fermann
  • Publication number: 20150036703
    Abstract: Various embodiments include large cores fibers that can propagate few modes or a single mode while introducing loss to higher order modes. Some of these fibers are holey fibers that comprise cladding features such as air-holes. Additional embodiments described herein include holey rods. The rods and fibers may be used in many optical systems including optical amplification systems, lasers, short pulse generators, Q-switched lasers, etc. and may be used for example for micromachining.
    Type: Application
    Filed: October 21, 2014
    Publication date: February 5, 2015
    Inventors: Liang Dong, William Wong, Martin E. Fermann
  • Publication number: 20150023628
    Abstract: Compact laser systems are disclosed which include ultrafast laser sources in combination with nonlinear crystals or waveguides. In some implementations fiber based mid-IR sources producing very short pulses and/or mid-IR sources based on a mode locked fiber lasers are utilized. A difference frequency generator receives outputs from the ultrafast sources, and generates an output including a difference frequency. The output power from the difference frequency generator can further be enhanced via the implementation of large core dispersion shifted fibers. Exemplary applications of the compact, high brightness mid-IR light sources include medical applications, spectroscopy, ranging, sensing and metrology.
    Type: Application
    Filed: October 7, 2014
    Publication date: January 22, 2015
    Applicant: IMRA AMERICA, INC.
    Inventors: Martin E. FERMANN, Ingmar HARTL
  • Publication number: 20140376084
    Abstract: The invention describes classes of robust fiber laser systems usable as pulse sources for Nd: or Yb: based regenerative amplifiers intended for industrial settings. The invention modifies adapts and incorporates several recent advances in FCPA systems to use as the input source for this new class of regenerative amplifier.
    Type: Application
    Filed: September 10, 2014
    Publication date: December 25, 2014
    Applicant: IMRA AMERICA, INC.
    Inventors: Donald J. HARTER, Gyu C. CHO, Zhenlin LIU, Martin E. FERMANN, Xinhua GU, Salvatore F. NATI, Lawrence SHAH, Ingmar HARTL, Mark BENDETT
  • Patent number: 8902493
    Abstract: Various embodiments described herein comprise a laser and/or an amplifier system including a doped gain fiber having ytterbium ions in a phosphosilicate glass. Various embodiments described herein increase pump absorption to at least about 1000 dB/m-9000 dB/m. The use of these gain fibers provide for increased peak-powers and/or pulse energies. The various embodiments of the doped gain fiber having ytterbium ions in a phosphosilicate glass exhibit reduced photo-darkening levels compared to photo-darkening levels obtainable with equivalent doping levels of an ytterbium doped silica fiber.
    Type: Grant
    Filed: July 16, 2013
    Date of Patent: December 2, 2014
    Assignee: IMRA America, Inc.
    Inventors: Liang Dong, Martin E. Fermann, Hugh McKay, Libin Fu, Shigeru Suzuki
  • Patent number: 8873916
    Abstract: Various embodiments include large cores fibers that can propagate few modes or a single mode while introducing loss to higher order modes. Some of these fibers are holey fibers that comprising cladding features such as air-holes. Additional embodiments described herein include holey rods. The rods and fibers may be used in many optical systems including optical amplification systems, lasers, short pulse generators, Q-switched lasers, etc. and may be used for example for micromachining.
    Type: Grant
    Filed: October 15, 2013
    Date of Patent: October 28, 2014
    Assignee: IMRA America, Inc.
    Inventors: Liang Dong, William Wong, Martin E. Fermann
  • Patent number: 8873593
    Abstract: A laser utilizes a cavity design which allows the stable generation of high peak power pulses from mode-locked multi-mode fiber lasers, greatly extending the peak power limits of conventional mode-locked single-mode fiber lasers. Mode-locking may be induced by insertion of a saturable absorber into the cavity and by inserting one or more mode-filters to ensure the oscillation of the fundamental mode in the multi-mode fiber. The probability of damage of the absorber may be minimized by the insertion of an additional semiconductor optical power limiter into the cavity.
    Type: Grant
    Filed: February 16, 2001
    Date of Patent: October 28, 2014
    Assignee: IMRA America, Inc.
    Inventor: Martin E. Fermann
  • Patent number: 8861555
    Abstract: Compact laser systems are disclosed which include ultrafast laser sources in combination with nonlinear crystals or waveguides. In some implementations fiber based mid-IR sources producing very short pulses and/or mid-IR sources based on a mode locked fiber lasers are utilized. A difference frequency generator receives outputs from the ultrafast sources, and generates an output including a difference frequency. The output power from the difference frequency generator can further be enhanced via the implementation of large core dispersion shifted fibers. Exemplary applications of the compact, high brightness mid-IR light sources include medical applications, spectroscopy, ranging, sensing and metrology.
    Type: Grant
    Filed: November 20, 2012
    Date of Patent: October 14, 2014
    Assignee: IMRA America, Inc.
    Inventors: Martin E. Fermann, Jens Bethge, Ingmar Hartl
  • Patent number: 8855151
    Abstract: The invention describes classes of robust fiber laser systems usable as pulse sources for Nd: or Yb: based regenerative amplifiers intended for industrial settings. The invention modifies adapts and incorporates several recent advances in FCPA systems to use as the input source for this new class of regenerative amplifier.
    Type: Grant
    Filed: July 5, 2013
    Date of Patent: October 7, 2014
    Assignee: Imra America, Inc.
    Inventors: Donald J. Harter, Gyu C. Cho, Zhenlin Liu, Martin E. Fermann, Xinhua Gu, Salvatore F. Nati, Lawrence Shah, Ingmar Hartl, Mark Bendett