Patents by Inventor Martin Roche

Martin Roche has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8494805
    Abstract: A method for determining orthopedic alignment is provided. The method includes monitoring a first and second sequence of signals transmitted from the first device to a second device, estimating a location of the first device from sensory measurements of the signals at respective sensors on the second device, calculating a set of phase differences, weighting a difference of an expected location and estimated location of the first device with the set of phase differences to produce a relative displacement, and reporting a position of an orthopedic instrument coupled to the first device based on the relative displacement.
    Type: Grant
    Filed: July 19, 2011
    Date of Patent: July 23, 2013
    Assignee: Orthosensor
    Inventors: Martin Roche, Jason McIntosh, Marc Boillot, Carlos Gil
  • Patent number: 8421642
    Abstract: A system and method for is provided for operation of an orthopedic system. The system includes a load sensor for converting an applied pressure associated with a force load on an anatomical joint, and an ultrasonic device for creating a low-power short-range ultrasonic sensing field within proximity of the load sensing unit for assessing alignment. The system can adjust a strength and range of the ultrasonic sensing field according to position. It can report audible and visual information associated with the force load and alignment. Other embodiments are disclosed.
    Type: Grant
    Filed: June 20, 2011
    Date of Patent: April 16, 2013
    Assignee: NaviSense
    Inventors: Jason McIntosh, Marc Boillot, Martin Roche
  • Patent number: 8413117
    Abstract: A computer-implemented method for focusing product testing based on areas of change within the product is described. A link between resource files of a product and test cases associated with the product is created. The resource files of a first build of the product are compared with the resource files of a second build of the product. A report that comprises which resource files changed between the first build of the product and the second build of the product is generated. The resource files that have changed and the test cases linked to the changed resource files are displayed. The test cases linked to the changed resource files are executed.
    Type: Grant
    Filed: August 7, 2009
    Date of Patent: April 2, 2013
    Assignee: Symantec Corporation
    Inventors: Martin Coughlan, Janick Deregnieaux, Robert Leyden, Sebastian Nowak, Martin Roche
  • Patent number: 8411034
    Abstract: One embodiment of a sterile networked interface system is provided comprising a hand-held surgical tool and a data processing system. The surgical tool includes a sensor for sensing a physical variable related to the surgery, a wireless communication unit to transmit the physical variable to the data processing system, and a battery for powering the hand-held surgical tool. The surgical tool sends the physical variable and orientation information responsive to a touchless gesture control and predetermined orientation of the surgical tool. Other embodiments are disclosed.
    Type: Grant
    Filed: March 12, 2010
    Date of Patent: April 2, 2013
    Inventors: Marc Boillot, Martin Roche
  • Publication number: 20130079679
    Abstract: A load balance and alignment system is provided to assess load forces on the vertebra in conjunction with overall spinal alignment. The system includes a spine instrument having an electronic assembly and a sensorized head. The sensorized head can be inserted between vertebra and report vertebral conditions such as force, pressure, orientation and edge loading. A GUI is therewith provided to show where the spine instrument is positioned relative to vertebral bodies as the instrument is placed in the inter-vertebral space. The system can report optimal prosthetic size and placement in view of the sensed load and location parameters including optional orientation, rotation and insertion angle along a determined insert trajectory.
    Type: Application
    Filed: September 23, 2011
    Publication date: March 28, 2013
    Applicant: ORTHOSENSOR
    Inventors: Martin Roche, Marc Boillot, Marc Stein
  • Publication number: 20130079680
    Abstract: A spine alignment system is provided to assess load forces on the vertebra in conjunction with overall spinal alignment. The system includes a spine instrument having an electronic assembly and a sensorized head. The sensorized head can be inserted between vertebra and report vertebral conditions such as force, pressure, orientation and edge loading. A GUI is therewith provided to show where the spine instrument is positioned relative to vertebral bodies as the instrument is placed in the inter-vetebral space. The system can distract vertebrae to a first height and measure the load applied by the spine region. The GUI can indicate that the load is outside a predetermined range. The spine region can be distracted to a second height where the load is measured within the predetermined load range.
    Type: Application
    Filed: September 23, 2011
    Publication date: March 28, 2013
    Applicant: ORTHOSENSOR
    Inventors: Marc Stein, Martin Roche, Marc Boillot
  • Publication number: 20130023795
    Abstract: A distractor suitable for measuring a force, pressure, or load applied by the muscular-skeletal system is disclosed. An insert couples to the distractor. The insert has at least one articular surface allowing movement of the muscular-skeletal system when the distractor is inserted thereto. The insert can be a passive insert having no measurement devices. A sensor array and electronics are housed within the distractor. The distractor can dynamically distract the muscular-skeletal system. A handle of the distractor can be rotated to increase or decrease the spacing between support structures. The measurement system comprises a sensor array and electronic circuitry. In one embodiment, the electronic circuitry is coupled to the sensor array by a unitary circuit board or substrate. The sensors can be integrated into the unitary circuit board. For example, the sensors can comprise elastically compressible capacitors or piezo-resistive devices.
    Type: Application
    Filed: September 28, 2012
    Publication date: January 24, 2013
    Applicant: ORTHOSENSOR INC.
    Inventors: Marc Stein, Gabriel Carrasco, Martin Roche
  • Publication number: 20130023794
    Abstract: A distractor suitable for measuring a force, pressure, or load applied by the muscular-skeletal system is disclosed. In one embodiment, the distractor includes a measurement device that couples to the distractor. In a second embodiment, the sensor array and electronics are placed within the distractor. The distractor can dynamically distract the muscular-skeletal system. A handle of the distractor can be rotated to increase or decrease the spacing between support structures. The measurement system comprises a sensor array and electronic circuitry. In one embodiment, the electronic circuitry is coupled to the sensor array by a unitary circuit board or substrate. The sensors can be integrated into the unitary circuit board. For example, the sensors can comprise elastically compressible capacitors or piezo-resistive devices. The distractor wirelessly couples to a remote system for providing position and magnitude measurement data of the force, pressure, or load being measured.
    Type: Application
    Filed: September 28, 2012
    Publication date: January 24, 2013
    Applicant: Orthosensor Inc.
    Inventors: Marc Stein, Gabriel Carrasco, Martin Roche
  • Publication number: 20120330367
    Abstract: A configurable check and balance system is provided to assess and report orthopedic measurements, including bone cut angles, trial inserts, extension gaps and prosthetic fit. The system can be configured for cut-check, trial-check, alignment and balance, dynamic distraction, and prosthetic trial fit. The measurements can be provided with respect to an anatomical coordinate system defined according to a positioning of a sensorized mechanical plate with respect to one or more referenced anatomical landmarks. In one example, the cut-check provides measurement of varus/valgus angle and anterior/posterior slope for distal femur cuts and proximal tibia cuts. The cut-check permits a surgeon to check bone cuts made by mechanical jigs, guides or patient specific implants (PSI). It also provides distance measurements. Other embodiments are also disclosed.
    Type: Application
    Filed: June 19, 2012
    Publication date: December 27, 2012
    Applicant: Orthosensor, Inc.
    Inventors: Martin Roche, Marc Boillot, Jason McIntosh, Carlos Gil
  • Patent number: 8270253
    Abstract: A method for short range alignment using ultrasonic sensing is provided. The method includes shaping an ultrasonic pulse on a first device to produce a pulse shaped signal and transmitting the pulse shaped signal from the first device to a second device, receiving the pulse shaped signal and determining an arrival time of the pulse shaped, identifying a relative phase of the pulse shaped signal with respect to a previously received pulse shaped signal, identifying a pointing location of the first device from the arrival time and the relative phase, determining positional information of the pointing location of the first device, and reporting an alignment of three or more points in three-dimensional space. Other embodiments are disclosed.
    Type: Grant
    Filed: October 3, 2011
    Date of Patent: September 18, 2012
    Assignee: Orthosensor, Inc.
    Inventors: Martin Roche, Jason McIntosh, Marc Boillot
  • Publication number: 20120232834
    Abstract: A method for determining orthopedic alignment is provided. The method includes monitoring a first and second sequence of signals transmitted from the first device to a second device, estimating a location of the first device from sensory measurements of the signals at respective sensors on the second device, calculating a set of phase differences, weighting a difference of an expected location and estimated location of the first device with the set of phase differences to produce a relative displacement, and reporting a position of an orthopedic instrument coupled to the first device based on the relative displacement.
    Type: Application
    Filed: July 19, 2011
    Publication date: September 13, 2012
    Applicant: Orthosensor, Inc.
    Inventors: Martin Roche, Jason McIntosh, Marc Boillot, Carlos Gil
  • Publication number: 20120209117
    Abstract: A portable measurement system is provided including a probe, a user interface control and a receiver. The probe includes a plurality of ultrasonic transducers that emit ultrasonic waveforms for creating a three-dimensional sensing space. The user interface control captures a location and position of the probe in the three-dimensional sensing space. The receiver includes a plurality of microphones to capture the ultrasonic waveforms transmitted from the probe to produce captured ultrasonic waveforms and a digital signal processor that digitally samples the captured ultrasonic waveforms and tracks a relative location and movement of the probe with respect to the receiver in the three-dimensional ultrasonic sensing space from time of flight waveform analysis. Embodiments are demonstrated with respect to hip replacement surgery, but other embodiments are contemplated.
    Type: Application
    Filed: March 19, 2012
    Publication date: August 16, 2012
    Applicant: Orthosensor, Inc.
    Inventors: Alon Mozes, Carlos Gil, Jason McIntosh, Marc Boillot, Martin Roche
  • Publication number: 20120109150
    Abstract: A surgical apparatus includes a surgical device, configured to be manipulated by a user to perform a procedure on a patient, and a computer system. The computer system is programmed to implement control parameters for controlling the surgical device to provide at least one of haptic guidance to the user and a limit on user manipulation of the surgical device, based on a relationship between an anatomy of the patient and at least one of a position, an orientation, a velocity, and an acceleration of a portion of the surgical device, and to adjust the control parameters in response to movement of the anatomy during the procedure.
    Type: Application
    Filed: August 1, 2011
    Publication date: May 3, 2012
    Inventors: Arthur Quaid, Hyosig Kang, Dennis Moses, Rony Abovitz, Maurice R. Ferre, Binyamin Hajaj, Martin Roche, Scott Illsley, Louis Arata, Dana Mears, Timothy Blackwell, Alon Mozes, Sherif Aly, Amardeep Singh Dugal, Randall Hand, Sandi Glauser, Juan Salcedo, Peter Ebbitt, William Tapia
  • Publication number: 20120095526
    Abstract: A post-operative pain inhibitor system comprises a controller and leads. Neuro-stimulator circuitry may be included within the patient controller or within one or more prosthetic components for generating a signal. In one example, a hip implant includes a prosthetic component having at least one electrode where the at least one electrode is configured to deliver energy pulses. Topical leads, percutaneous leads, subcutaneous leads, intraosseous leads, or leads can be placed in proximity to the operative field corresponding to the prosthetic component installation. The lead or electrodes can be coupled to neuro-stimulation circuitry to stimulate peripheral nerve fibers to affect body generated action potentials. A transmitter or power source can be housed in a prosthetic hip component. Controller can modify the pulse width, pulse shape, pulse repetition rate, and pulse amplitude of the signal thereby allowing the patient to adapt the signal to minimize their perceived pain.
    Type: Application
    Filed: December 2, 2011
    Publication date: April 19, 2012
    Inventor: Martin Roche
  • Publication number: 20120078324
    Abstract: A post-operative pain inhibitor system comprises a controller and leads. Neuro-stimulator circuitry may be included within the patient controller or within one or more prosthetic components for generating a signal. In one example, an electrode is configured to be attached to skin in proximity to an operative field of an implanted joint. Topical leads, percutaneous leads, subcutaneous leads, intraosseous leads, or leads can also be placed in proximity to the operative field corresponding to the prosthetic component installation. The lead or electrodes can be coupled to neuro-stimulation circuitry to stimulate peripheral nerve fibers to affect body generated action potentials. A transmitter or power source can be housed in a prosthetic component. The controller can modify the pulse width, pulse shape, pulse repetition rate, and pulse amplitude of the signal thereby allowing the patient to adapt the signal to minimize their perceived pain.
    Type: Application
    Filed: December 2, 2011
    Publication date: March 29, 2012
    Inventor: Martin Roche
  • Publication number: 20120035868
    Abstract: A portable measurement system is provided comprising a probe, two trackers, a receiver and a pod. A user interface control captures a location and position of the probe in a three-dimensional sensing space with respect to a coordinate system of the receiver from time of flight waveform analysis. The system suppresses a ringing portion of the received ultrasonic and minimizes distortion associated with ultrasonic transducer ring-down during high-resolution position tracking of the probe and the two trackers. Media is presented according to a customized use of the probe and two trackers during an operation workflow.
    Type: Application
    Filed: October 20, 2011
    Publication date: February 9, 2012
    Applicant: Orthosensor, Inc.
    Inventors: Martin Roche, Jason McIntosh, Marc Boillot, Carlos Gil
  • Patent number: 8098544
    Abstract: A method for short range alignment using ultrasonic sensing is provided. The method includes shaping an ultrasonic pulse on a first device to produce a pulse shaped signal and transmitting the pulse shaped signal from the first device to a second device, receiving the pulse shaped signal and determining an arrival time of the pulse shaped, identifying a relative phase of the pulse shaped signal with respect to a previously received pulse shaped signal, identifying a pointing location of the first device from the arrival time and the relative phase, determining positional information of the pointing location of the first device, and reporting an alignment of three or more points in three-dimensional space. Other embodiments are disclosed.
    Type: Grant
    Filed: April 20, 2010
    Date of Patent: January 17, 2012
    Assignee: Orthosensor, Inc.
    Inventors: Martin Roche, Jason McIntosh, Marc Boillot
  • Publication number: 20110319755
    Abstract: A sensing insert device (100) is disclosed for measuring a parameter of the muscular-skeletal system. The sensing insert device (100) can be temporary or permanent. The sensing module (200) is a self-contained encapsulated measurement device having at least one contacting surface that couples to the muscular-skeletal system. The sensing module (200) comprises one or more sensing assemblages (1802), electronic circuitry (307), an antenna (2302), and communication circuitry (320). The sensing assemblages (1802) are between a top plate (1502) and a bottom plate (1504) in a sensing platform (121). The bottom plate (1504) is supported by a ledge (1708) on an interior surface of a sidewall (1716) of a housing (1706). A cap (1702) couples to top plate (1502). The cap (1702) is adhesively coupled to the housing (1706). The adhesive is flexible allowing movement of the cap (1702) when a force, pressure, or load is applied thereto.
    Type: Application
    Filed: June 29, 2010
    Publication date: December 29, 2011
    Applicant: OrthoSensor
    Inventors: Marc Stein, Jim Ellis, Martin Roche
  • Patent number: 8000926
    Abstract: A method for determining position and alignment is provided. The method includes monitoring a first and second sequence of ultrasonic signals transmitted from the first device to a second device, estimating a location of the first device from Time of Flight measurements of the ultrasonic signals at respective microphones on the second device, calculating a set of phase differences, weighting a difference of an expected location and estimated location of the first device with the set of phase differences to produce a relative displacement, and reporting a position of the first device based on the relative displacement.
    Type: Grant
    Filed: April 20, 2010
    Date of Patent: August 16, 2011
    Assignee: Orthosensor
    Inventors: Martin Roche, Marc Boillot, Jason McIntosh
  • Publication number: 20110160616
    Abstract: A sensing insert device (100) is disclosed for measuring a parameter of the muscular-skeletal system. The sensing insert device (100) can be temporary or permanent. The sensing module (200) is a self-contained encapsulated measurement device having at least one contacting surface that couples to the muscular-skeletal system. The sensing module (200) comprises one or more sensing assemblages, electronic circuitry (307), an antenna (2302), and communication circuitry (320). The sensing assemblages are between a top plate (1502) and a bottom plate (1504) in a sensing platform (121). The sensing assemblages measure the parameter and comprise a load disc (2004) and a piezo-resistive sensor (2002). Three sensing assemblages are coupled at predetermined positions to the top plate (1502). The sensing module (200) can measure a location where the parameter is applied to the top plate (1502).
    Type: Application
    Filed: June 29, 2010
    Publication date: June 30, 2011
    Applicant: OrthoSensor
    Inventors: Marc Stein, Martin Roche