Patents by Inventor Martin Schäfer

Martin Schäfer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8372994
    Abstract: Glycidyl 2-propylheptanoate, glycidyl 4-methyl-2-propylhexanoate or a mixture of these (referred to collectively for short as glycidyl ester).
    Type: Grant
    Filed: June 24, 2008
    Date of Patent: February 12, 2013
    Assignee: BASF SE
    Inventors: Kai Gumlich, Roland Merten, Michael Henningsen, Martin Schaefer, Joaquim Henrique Teles, Bernhard Mohr
  • Publication number: 20130035271
    Abstract: The present invention relates to a process for the preparation of an ester from a polyol which is solid at 25° C. and a carboxylic acid component which contains at least 50 wt. % of at least one mono- or polyunsaturated aliphatic carboxylic acid, based on the total weight of the carboxylic acid component, in a reactor under reduced pressure. The invention also provides a device, a process for the preparation of a thermoplastic composition comprising the ester prepared according to the invention, a process for the production of a shaped article comprising the ester according to the invention or the thermoplastic composition according to the invention, a process for the production of a packed product, a process for the production of an at least partly coated object, and uses of the esters according to the invention as an additive in various compositions.
    Type: Application
    Filed: December 30, 2010
    Publication date: February 7, 2013
    Inventors: Peter Daute, Wilhelm Reiners, Martin Schäfer, Udo Frerichs, Hinrich Hildebrandt, Joern Ellerbrake
  • Patent number: 8353200
    Abstract: An arrangement for detection of the sharpness of chopper knives that can be moved relative to a shear bar includes a sensor that detects the effective cutting forces directly or indirectly and an evaluation arrangement connected to the sensor. The evaluation arrangement integrates the measured values of the sensor over time in order to generate information concerning the sharpness of the chopper knives.
    Type: Grant
    Filed: October 30, 2009
    Date of Patent: January 15, 2013
    Assignee: Deere & Company
    Inventors: Folker Beck, Martin Schäfer
  • Publication number: 20130012739
    Abstract: A process for preparing formic acid by reacting carbon dioxide with hydrogen in a hydrogenation reactor in the presence of a catalyst comprising an element of group 8, 9 or 10 of the Periodic Table, a tertiary amine and a polar solvent to form formic acid-amine adducts which are subsequently dissociated thermally into formic acid and tertiary amine.
    Type: Application
    Filed: July 6, 2012
    Publication date: January 10, 2013
    Applicant: BASF SE
    Inventors: Thomas Schaub, Donata Maria Fries, Rocco Paciello, Peter Bassler, Martin Schäfer, Stefan Rittinger
  • Publication number: 20130001837
    Abstract: A method of producing a turbine blade is provided, wherein the turbine blade is produced by an additive production method. Cavities and/or lattice structures can be produced in one and the same process. The additive production method also allows drainage slots, heating openings, and/or other holes or, as the case may be, recesses to be provided in the turbine blade while the turbine blade is being produced. Holes can furthermore be furnished completely or partially with a lattice structure.
    Type: Application
    Filed: September 14, 2010
    Publication date: January 3, 2013
    Inventors: Jens Göhler, Frank Kernstock, Olaf Rehme, Martin Schäfer
  • Publication number: 20120205996
    Abstract: The invention relates to an electric machine (100) comprising a stator (107) and a rotor (101), wherein the rotor (101) comprises a hollow shaft (102), wherein a closed hollow space (103) is formed by means of the hollow shaft (102), wherein the closed hollow space (103) is provided for receiving a cooling agent, wherein a three-dimensional transport structure (200) is provided in the closed hollow chamber (103) for transporting the cooling agent. The three-dimensional structure can, for example, be produced by means of applying an adaptive material.
    Type: Application
    Filed: October 22, 2010
    Publication date: August 16, 2012
    Applicant: SIEMENS AKTIENGESELLSCHAFT
    Inventors: Klaus Büttner, Vladimir Danov, Olaf Rehme, Martin Schäfer
  • Publication number: 20120183701
    Abstract: A method produces a marked object. To be able to create markings in a particularly flexible way, it is provided that the object is produced by an additive production process, at least one marking being formed in the object during the additive production process. The method makes many degrees of freedom possible in the design of the marking. For example, the method makes it possible in a very simple way for two- or three-dimensional structures to be concealed within the object during the additive production process. In addition or as an alternative, production parameters can be varied, whether stochastically or deterministically, to produce variations in density. For example, a porous microstructure may be produced as a marking. It is also possible for basic material in the object to be left untreated or to be differently treated, so that it forms the marking.
    Type: Application
    Filed: September 16, 2010
    Publication date: July 19, 2012
    Inventors: Heinz Pilz, Olaf Rehme, Martin Schäfer
  • Publication number: 20120182636
    Abstract: A monolithic substrate of glass or glass ceramics and methods for manufacturing are provided, where the substrate has a lightweight structure. The lightweight structure includes recesses that are delimited by webs, such webs forming tetragonal or four-corner-shaped pockets. Due to the lightweight structure, the weight of the substrate can be significantly reduced, and at the same time a high rigidity can be ensured. The substrate can be used as a mirror support or a mirror and can be employed terrestrially and/or extra-terrestrially.
    Type: Application
    Filed: January 19, 2012
    Publication date: July 19, 2012
    Applicant: SCHOTT AG
    Inventors: Volker Seibert, Martin Schaefer, Thomas Westerhoff, Ralf Reiter, Ralf Jedamzik
  • Publication number: 20120157711
    Abstract: The present invention relates to a process for preparing formic acid by reacting carbon dioxide (1) with hydrogen (2) in a hydrogenation reactor (I) in the presence of a catalyst comprising an element of group 8, 9 or 10 of the Periodic Table, a tertiary amine comprising at least 12 carbon atoms per molecule and a polar solvent comprising one or more monoalcohols selected from among methanol, ethanol, propanols and butanols, to form formic acid/amine adducts as intermediates which are subsequently thermally dissociated, where a tertiary amine having a boiling point which is at least 5° C. higher than that of formic acid is used and a reaction mixture comprising the polar solvent, the formic acid/amine adducts, the tertiary amine and the catalyst is formed in the reaction in the hydrogenation reactor (I) and is discharged from the reactor as output (3).
    Type: Application
    Filed: December 20, 2011
    Publication date: June 21, 2012
    Applicant: BASF SE
    Inventors: Thomas Schaub, Donata Maria Fries, Rocco Paciello, Klaus-Dieter Mohl, Martin Schäfer, Stefan Rittinger, Petra Deckert, Peter Bassler
  • Publication number: 20120022290
    Abstract: A process for preparing formic acid by reaction of carbon dioxide (1) with hydrogen (2) in a hydrogenation reactor (I) in the presence of a catalyst comprising an element of group 8, 9 or 10 of the Periodic Table, a tertiary amine comprising at least 12 carbon atoms per molecule and a polar solvent comprising one or more monoalcohols selected from among methanol, ethanol, propanols and butanols, to form formic acid/amine adducts as intermediates which are subsequently thermally dissociated, where the work-up of the output (3) from the hydrogenation reactor (I) is carried out by addition of water so as to increase the distribution coefficient of the catalyst between the upper phase (4) and the lower phase.
    Type: Application
    Filed: June 29, 2011
    Publication date: January 26, 2012
    Applicant: BASF SE
    Inventors: Thomas Schaub, Donata Maria Fries, Rocco Paciello, Klaus-Dieter Mohl, Martin Schäfer, Stefan Rittinger, Daniel Schneider
  • Publication number: 20110319657
    Abstract: Process for obtaining formic acid by thermal separation of a stream comprising formic acid and a tertiary amine (I), in which a liquid stream comprising formic acid and a tertiary amine (I) in a molar ratio of from 0.5 to 5 is produced by combining tertiary amine (I) and a formic acid source, from 10 to 100% by weight of the secondary components present therein are separated off and formic acid is removed by distillation in a distillation apparatus at a bottom temperature of from 100 to 300° C. and a pressure of from 30 to 3000 hPa abs from the liquid stream obtained, the bottom discharge from the distillation apparatus being separated into two liquid phases and the upper liquid phase being recycled to the formic acid source and the lower liquid phase being recycled for separating off the secondary components and/or to the distillation apparatus.
    Type: Application
    Filed: June 29, 2011
    Publication date: December 29, 2011
    Applicant: BASF SE
    Inventors: Daniel Schneider, Klaus-Dieter Mohl, Martin Schäfer, Karin Pickenäcker, Stefan Rittinger, Thomas Schaub, Joaquim Henrique Teles, Rocco Paciello, Gerd Kaibel
  • Publication number: 20110319658
    Abstract: A process for preparing formic acid by reaction of carbon dioxide (1) with hydrogen (2) in a hydrogenation reactor (I) in the presence of a catalyst comprising an element of group 8, 9 or 10 of the Periodic Table, a tertiary amine comprising at least 12 carbon atoms per molecule and a polar solvent comprising one or more monoalcohols selected from among methanol, ethanol, propanols and butanols and also water, to form formic acid/amine adducts as intermediates which are subsequently thermally dissociated, with work-up of the output (3) from the hydrogenation reactor (I) in a plurality of process steps, where a tertiary amine-comprising stream (13) from the work-up is used as selective solvent for the catalyst, is proposed.
    Type: Application
    Filed: June 29, 2011
    Publication date: December 29, 2011
    Applicant: BASF SE
    Inventors: Thomas Schaub, Donata Maria Fries, Rocco Paciello, Klaus-Dieter Mohl, Martin Schäfer, Stefan Rittinger, Daniel Schneider
  • Patent number: 8074423
    Abstract: The three components composed parquet joint cement system comprises an aqueous epoxy resin dispersion, an amine hardener, which forms a solid adduct, and a wood flour. The solid portion in an aqueous epoxy resin dispersion is 5-10 wt. %, preferably 7-9 wt. % of parquet joint cement. The solid portion in the amine hardener is 4-7 wt. %, particularly 5-6 wt. % of parquet joint cement. An additional component with water mixable organic solvent, selected from alcohols or ketone, preferably ethanol, acetone, isopropanol or their mixture are also provided. An independent claim is also included for a method for producing a parquet joint cement, which involves utilizing an aqueous epoxy resin dispersion, an amine hardener, and wood flour.
    Type: Grant
    Filed: May 13, 2009
    Date of Patent: December 13, 2011
    Assignee: Wakol GmbH
    Inventors: Götz Hillert, Martin Schäfer
  • Publication number: 20110135840
    Abstract: A component is produced through selective laser melting of a powder material in a process chamber using a laser which is also used for producing coating areas of the component. The coating areas have a composition that differs from the composition of the powder material. This is accomplished by intermittently introducing a reactive gas that reacts with the powder material or that produces a material on the component from the precursors present in the reactive gas. In the process chamber, a feed line may be provided for introducing the reactive gas close to the laser.
    Type: Application
    Filed: June 17, 2009
    Publication date: June 9, 2011
    Inventors: Christian Doye, Sven Pyritz, Uwe Pyritz, Martin Schäfer
  • Publication number: 20110137077
    Abstract: The invention relates to a process for oxidizing at least one organic substance with oxygen, which comprises the following steps: (a) adding the at least one organic substance as a liquid and an oxygenous gas stream to a first reaction stage to form a reaction mixture, at least some of the oxygen reacting with the organic compound to form a reaction product, (b) adding the reaction mixture from the first reaction stage to an adiabatically operated reaction stage in which the unconverted organic substance reacts further at least partly to give the product. The invention further relates to an apparatus for performing the process.
    Type: Application
    Filed: August 18, 2008
    Publication date: June 9, 2011
    Applicant: BASF SE
    Inventors: Joaquim H. Teles, Steffen Oehlenschläger, Kai Gumlich, Martin Schäfer, Stephan Lamm, Stefan Berg, Michael Nilles, Hans-Peter Schildberg, Tilo John, Peter Zehner
  • Publication number: 20110087038
    Abstract: The invention relates to a process for the oxidation of organic compounds by means of oxygen, in which, in a first step, the organic compound and at least part of the oxygen required for the oxidation are introduced into a first reaction zone which is operated isothermally and with backmixing and, in a second step, the reaction mixture from the first reaction zone is introduced into a second reaction zone which is operated adiabatically. The invention further relates to a reactor for carrying out the process, which comprises at least one isothermal reaction zone (3, 5) and an adiabatic reaction zone (7) which are arranged in a reactor shell (8), with each isothermal reaction zone (3, 5) being configured in the form of a jet loop reactor and the adiabatic reaction zone (7) being configured as a bubble column.
    Type: Application
    Filed: August 1, 2008
    Publication date: April 14, 2011
    Applicant: BASF SE
    Inventors: Joaquim H Teles, Kai Gumlich, Jochen Schäfer, Steffen Oehlenschläger, Stephan Lamm, Roland Merten, Martin Schäfer, Rüdiger Grob, Uwe Emnet
  • Publication number: 20100331573
    Abstract: Process for preparing formic acid by hydrogenation of carbon dioxide in the presence of a catalyst comprising an element of group 8, 9 or 10 of the Periodic Table, a tertiary amine and a polar solvent at a pressure of from 0.2 to 30 MPa abs and a temperature of from 20 to 200° C. to form two liquid phases, separation of the two liquid phases, wherein the liquid phase (B) enriched with the tertiary amine is recirculated to the hydrogenation reactor and the formic acid/amine adduct from the liquid phase (A) enriched with the formic acid/amine adduct and the polar solvent is thermally dissociated into free formic acid and free tertiary amine in a distillation unit and the tertiary amine liberated in the dissociation and the polar solvent are recirculated to the hydrogenation reactor.
    Type: Application
    Filed: June 25, 2010
    Publication date: December 30, 2010
    Applicant: BASF SE
    Inventors: Thomas Schaub, Rocco Paciello, Klaus-Dieter Mohl, Daniel Schneider, Martin Schäfer, Stefan Rittinger
  • Publication number: 20100180802
    Abstract: Glycidyl 2-propylheptanoate, glycidyl 4-methyl-2-propylhexanoate or a mixture of these (referred to collectively for short as glycidyl ester).
    Type: Application
    Filed: June 24, 2008
    Publication date: July 22, 2010
    Applicant: BASF SE
    Inventors: Kai Gumlich, Roland Merten, Michael Henningsen, Martin Schaefer, Joaquim Henrique Teles, Bernhard Mohr
  • Publication number: 20100182711
    Abstract: A substrate and methods of making is provided. The substrate is made of glass or glass ceramic and finds use as a mirror support having a light-weight structure. The substrate includes recesses and is reinforced with covers in the region of bearing points for rigidification.
    Type: Application
    Filed: January 19, 2010
    Publication date: July 22, 2010
    Inventors: Thomas Westerhoff, Martin Schaefer, Peter Thomas, Ralf Reiter, Volker Seibert
  • Publication number: 20100126258
    Abstract: An arrangement for detection of the sharpness of chopper knives that can be moved relative to a shear bar includes a sensor that detects the effective cutting forces directly or indirectly and an evaluation arrangement connected to the sensor. The evaluation arrangement integrates the measured values of the sensor over time in order to generate information concerning the sharpness of the chopper knives.
    Type: Application
    Filed: October 30, 2009
    Publication date: May 27, 2010
    Inventors: Folker Beck, Martin Schäfer