Patents by Inventor Marwan H. Khater

Marwan H. Khater has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140091374
    Abstract: A method of forming an integrated photonic semiconductor structure having a photonic device and a CMOS device may include depositing a first silicon nitride layer having a first stress property over the photonic device, depositing an oxide layer having a stress property over the deposited first silicon nitride layer, and depositing a second silicon nitride layer having a second stress property over the oxide layer. The deposited first silicon nitride layer, the oxide layer, and the second silicon nitride layer encapsulate the photonic device.
    Type: Application
    Filed: September 28, 2012
    Publication date: April 3, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Solomon Assefa, Tymon Barwicz, Swetha Kamlapurkar, Marwan H. Khater, Steven M. Shank, Yurii A. Vlasov
  • Patent number: 8658530
    Abstract: An epitaxial Ni silicide film that is substantially non-agglomerated at high temperatures, and a method for forming the epitaxial Ni silicide film, is provided. The Ni silicide film of the present disclosure is especially useful in the formation of ETSOI (extremely thin silicon-on-insulator) Schottky junction source/drain FETs. The resulting epitaxial Ni silicide film exhibits improved thermal stability and does not agglomerate at high temperatures.
    Type: Grant
    Filed: September 12, 2012
    Date of Patent: February 25, 2014
    Assignees: International Business Machines Corporation, GlobalFoundries Inc.
    Inventors: Marwan H. Khater, Christian Lavoie, Bin Yang, Zhen Zhang
  • Publication number: 20140030835
    Abstract: A semiconductor structure includes a photonic modulator and a field effect transistor on a same substrate. The photonic modulator includes a modulator semiconductor structure and a semiconductor contact structure employing a same semiconductor material as a gate electrode of a field effect transistor. The modulator semiconductor structure includes a lateral p-n junction, and the semiconductor contact structure includes another lateral p-n junction. To form this semiconductor structure, the modulator semiconductor structure in the shape of a waveguide and an active region of a field effect transistor region can be patterned in a semiconductor substrate. A gate dielectric layer is formed on the modulator semiconductor structure and the active region, and is subsequently removed from the modulator semiconductor structure.
    Type: Application
    Filed: August 15, 2012
    Publication date: January 30, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Solomon Assefa, William M. J. Green, Marwan H. Khater, Yurii A. Vlasov
  • Patent number: 8637335
    Abstract: A semiconductor structure includes a photonic modulator and a field effect transistor on a same substrate. The photonic modulator includes a modulator semiconductor structure and a semiconductor contact structure employing a same semiconductor material as a gate electrode of a field effect transistor. The modulator semiconductor structure includes a lateral p-n junction, and the semiconductor contact structure includes another lateral p-n junction. To form this semiconductor structure, the modulator semiconductor structure in the shape of a waveguide and an active region of a field effect transistor region can be patterned in a semiconductor substrate. A gate dielectric layer is formed on the modulator semiconductor structure and the active region, and is subsequently removed from the modulator semiconductor structure.
    Type: Grant
    Filed: August 15, 2012
    Date of Patent: January 28, 2014
    Assignee: International Business Machines Corporation
    Inventors: Solomon Assefa, William M. J. Green, Marwan H. Khater, Yurii A. Vlasov
  • Patent number: 8586426
    Abstract: Shallow trenches are formed around a vertical stack of a buried insulator portion and a top semiconductor portion. A dielectric material layer is deposited directly on sidewalls of the top semiconductor portion. Shallow trench isolation structures are formed by filling the shallow trenches with a dielectric material such as silicon oxide. After planarization, the top semiconductor portion is laterally contacted and surrounded by the dielectric material layer. The dielectric material layer prevents exposure of the handle substrate underneath the buried insulator portion during wet etches, thereby ensuring electrical isolation between the handle substrate and gate electrodes subsequently formed on the top semiconductor portion.
    Type: Grant
    Filed: August 3, 2012
    Date of Patent: November 19, 2013
    Assignee: International Business Machines Corporation
    Inventors: Robert H. Dennard, Marwan H. Khater, Leathen Shi, Jeng-Bang Yau
  • Publication number: 20130277795
    Abstract: Line trenches are formed in a stack of a bulk semiconductor substrate and an oxygen-impermeable layer such that the depth of the trenches in the bulk semiconductor substrate is greater than the lateral spacing between a pair of adjacently located line trenches. Oxygen-impermeable spacers are formed on sidewalls of the line trenches. An isotropic etch, either alone or in combination with oxidation, removes a semiconductor material from below the oxygen-impermeable spacers to expand the lateral extent of expanded-bottom portions of the line trenches, and to reduce the lateral spacing between adjacent expanded-bottom portions. The semiconductor material around the bottom portions is oxidized to form a semiconductor oxide portion that underlies multiple oxygen-impermeable spacers. Semiconductor-on-insulator (SOI) portions are formed above the semiconductor oxide portion and within the bulk semiconductor substrate.
    Type: Application
    Filed: April 19, 2012
    Publication date: October 24, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Solomon Assefa, William M. J. Green, Marwan H. Khater, Yurii A. Vlasov
  • Patent number: 8541835
    Abstract: A field effect transistor (FET) includes a semiconductor on insulator substrate, the substrate comprising a top semiconductor layer; source and drain regions located in the top semiconductor layer; a channel region located in the top semiconductor layer between the source region and the drain region, the channel region having a thickness that is less than a thickness of the source and drain regions; a gate located over the channel region; and a supporting material located over the source and drain regions adjacent to the gate.
    Type: Grant
    Filed: August 10, 2012
    Date of Patent: September 24, 2013
    Assignee: International Business Machines Corporation
    Inventors: Jin Cai, Dechao Guo, Marwan H. Khater, Christian Lavoie, Zhen Zhang
  • Patent number: 8536012
    Abstract: Methods for fabricating bipolar junction transistors, bipolar junction transistors made by the methods, and design structures for a bipolar junction transistor. The bipolar junction transistor includes a dielectric layer on an intrinsic base and an extrinsic base at least partially separated from the intrinsic base by the dielectric layer. An emitter opening extends through the extrinsic base and the dielectric layer. The dielectric layer is recessed laterally relative to the emitter opening to define a cavity between the intrinsic base and the extrinsic base. The cavity is filled with a semiconductor layer that physically links the extrinsic base and the intrinsic base together.
    Type: Grant
    Filed: July 6, 2011
    Date of Patent: September 17, 2013
    Assignee: International Business Machines Corporation
    Inventors: Renata Camillo-Castillo, Peter B. Gray, David L. Harame, Alvin J. Joseph, Marwan H. Khater, Qizhi Liu
  • Patent number: 8525264
    Abstract: A semiconductor structure includes a photonic modulator and a field effect transistor on a same substrate. The photonic modulator includes a modulator semiconductor structure and a semiconductor contact structure employing a same semiconductor material as a gate electrode of a field effect transistor. The modulator semiconductor structure includes a lateral p-n junction, and the semiconductor contact structure includes another lateral p-n junction. To form this semiconductor structure, the modulator semiconductor structure in the shape of a waveguide and an active region of a field effect transistor region can be patterned in a semiconductor substrate. A gate dielectric layer is formed on the modulator semiconductor structure and the active region, and is subsequently removed from the modulator semiconductor structure.
    Type: Grant
    Filed: July 30, 2012
    Date of Patent: September 3, 2013
    Assignee: International Busines Machines Corporation
    Inventors: Solomon Assefa, William M. J. Green, Marwan H. Khater, Yurii A. Vlasov
  • Patent number: 8492838
    Abstract: Shallow trenches are formed around a vertical stack of a buried insulator portion and a top semiconductor portion. A dielectric material layer is deposited directly on sidewalls of the top semiconductor portion. Shallow trench isolation structures are formed by filling the shallow trenches with a dielectric material such as silicon oxide. After planarization, the top semiconductor portion is laterally contacted and surrounded by the dielectric material layer. The dielectric material layer prevents exposure of the handle substrate underneath the buried insulator portion during wet etches, thereby ensuring electrical isolation between the handle substrate and gate electrodes subsequently formed on the top semiconductor portion.
    Type: Grant
    Filed: November 16, 2009
    Date of Patent: July 23, 2013
    Assignee: International Business Machines Corporation
    Inventors: Robert H. Dennard, Marwan H. Khater, Leathen Shi, Jeng-Bang Yau
  • Patent number: 8482084
    Abstract: A Schottky field effect transistor is provided that includes a substrate having a layer of semiconductor material atop a dielectric layer, wherein the layer of semiconductor material has a thickness of less than 10.0 nm. A gate structure is present on the layer of semiconductor material. Raised source and drain regions comprised of a metal semiconductor alloy are present on the layer of semiconductor material on opposing sides of the gate structure. The raised source and drain regions are Schottky source and drain regions. In one embodiment, a first portion of the Schottky source and drain regions that is adjacent to a channel region of the Schottky field effect transistor contacts the dielectric layer, and a non-reacted semiconductor material is present between a second portion of the Schottky source and drain regions and the dielectric layer.
    Type: Grant
    Filed: March 18, 2010
    Date of Patent: July 9, 2013
    Assignees: International Business Machines Corporation, Global Foundries, Inc.
    Inventors: Marwan H. Khater, Christian Lavoie, Bin Yang, Zhen Zhang
  • Patent number: 8420469
    Abstract: A method for forming a field effect transistor (FET) includes forming a dummy gate on a top semiconductor layer of a semiconductor on insulator substrate; forming source and drain regions in the top semiconductor layer, wherein the source and drain regions are located in the top semiconductor layer on either side of the dummy gate; forming a supporting material over the source and drain regions adjacent to the dummy gate; removing the dummy gate to form a gate opening, wherein a channel region of the top semiconductor layer is exposed through the gate opening; thinning the channel region of the top semiconductor layer through the gate opening; and forming gate spacers and a gate in the gate opening over the thinned channel region.
    Type: Grant
    Filed: July 12, 2010
    Date of Patent: April 16, 2013
    Assignee: International Business Machines Corporation
    Inventors: Jin Cai, Dechao Guo, Marwan H. Khater, Christian Lavoie, Zhen Zhang
  • Patent number: 8420493
    Abstract: A lateral heterojunction bipolar transistor (HBT) is formed on a semiconductor-on-insulator substrate. The HBT includes a base including a doped silicon-germanium alloy base region, an emitter including doped silicon and laterally contacting the base, and a collector including doped silicon and laterally contacting the base. Because the collector current is channeled through the doped silicon-germanium base region, the HBT can accommodate a greater current density than a comparable bipolar transistor employing a silicon channel. The base may also include an upper silicon base region and/or a lower silicon base region. In this case, the collector current is concentrated in the doped silicon-germanium base region, thereby minimizing noise introduced to carrier scattering at the periphery of the base. Further, parasitic capacitance is minimized because the emitter-base junction area is the same as the collector-base junction area.
    Type: Grant
    Filed: July 24, 2012
    Date of Patent: April 16, 2013
    Assignee: International Business Machines Corporation
    Inventors: Tak H. Ning, Kevin K. Chan, Marwan H. Khater
  • Patent number: 8415748
    Abstract: An epitaxial Ni silicide film that is substantially non-agglomerated at high temperatures, and a method for forming the epitaxial Ni silicide film, is provided. The Ni silicide film of the present disclosure is especially useful in the formation of ETSOI (extremely thin silicon-on-insulator) Schottky junction source/drain FETs. The resulting epitaxial Ni silicide film exhibits improved thermal stability and does not agglomerate at high temperatures.
    Type: Grant
    Filed: April 23, 2010
    Date of Patent: April 9, 2013
    Assignee: International Business Machines Corporation
    Inventors: Marwan H. Khater, Christian Lavoie, Bin Yang, Zhen Zhang
  • Publication number: 20130009280
    Abstract: Methods for fabricating bipolar junction transistors, bipolar junction transistors made by the methods, and design structures for a bipolar junction transistor. The bipolar junction transistor includes a dielectric layer on an intrinsic base and an extrinsic base at least partially separated from the intrinsic base by the dielectric layer. An emitter opening extends through the extrinsic base and the dielectric layer. The dielectric layer is recessed laterally relative to the emitter opening to define a cavity between the intrinsic base and the extrinsic base. The cavity is filled with a semiconductor layer that physically links the extrinsic base and the intrinsic base together.
    Type: Application
    Filed: July 6, 2011
    Publication date: January 10, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Renata Camillo-Castillo, Peter B. Gray, David L. Harame, Alvin J. Joseph, Marwan H. Khater, Qizhi Liu
  • Publication number: 20130012020
    Abstract: An epitaxial Ni silicide film that is substantially non-agglomerated at high temperatures, and a method for forming the epitaxial Ni silicide film, is provided. The Ni silicide film of the present disclosure is especially useful in the formation of ETSOI (extremely thin silicon-on-insulator) Schottky junction source/drain FETs. The resulting epitaxial Ni silicide film exhibits improved thermal stability and does not agglomerate at high temperatures.
    Type: Application
    Filed: September 12, 2012
    Publication date: January 10, 2013
    Applicants: GLOBALFOUNDRIES INC., International Business Machines Corporation (YT)
    Inventors: Marwan H. Khater, Christian Lavoie, Bin Yang, Zhen Zhang
  • Publication number: 20120306019
    Abstract: A semiconductor device includes a first field effect transistor (FET) and a second FET located on a substrate, the first FET comprising a first interfacial oxide layer, and the second FET comprising a second interfacial oxide layer, wherein the second interfacial oxide layer of the second FET is thicker than the first interfacial oxide layer of the first FET; and a recess located in the substrate adjacent to the second FET.
    Type: Application
    Filed: August 10, 2012
    Publication date: December 6, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Jin Cai, Eduard A. Cartier, Martin M. Frank, Marwan H. Khater
  • Publication number: 20120299104
    Abstract: A field effect transistor (FET) includes a semiconductor on insulator substrate, the substrate comprising a top semiconductor layer; source and drain regions located in the top semiconductor layer; a channel region located in the top semiconductor layer between the source region and the drain region, the channel region having a thickness that is less than a thickness of the source and drain regions; a gate located over the channel region; and a supporting material located over the source and drain regions adjacent to the gate.
    Type: Application
    Filed: August 10, 2012
    Publication date: November 29, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Jin Cai, Dechao Guo, Marwan H. Khater, Christian Lavoie, Zhen Zhang
  • Publication number: 20120302039
    Abstract: Shallow trenches are formed around a vertical stack of a buried insulator portion and a top semiconductor portion. A dielectric material layer is deposited directly on sidewalls of the top semiconductor portion. Shallow trench isolation structures are formed by filling the shallow trenches with a dielectric material such as silicon oxide. After planarization, the top semiconductor portion is laterally contacted and surrounded by the dielectric material layer. The dielectric material layer prevents exposure of the handle substrate underneath the buried insulator portion during wet etches, thereby ensuring electrical isolation between the handle substrate and gate electrodes subsequently formed on the top semiconductor portion.
    Type: Application
    Filed: August 3, 2012
    Publication date: November 29, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Robert H. Dennard, Marwan H. Khater, Leathen Shi, Jeng-Bang Yau
  • Publication number: 20120289018
    Abstract: A lateral heterojunction bipolar transistor (HBT) is formed on a semiconductor-on-insulator substrate. The HBT includes a base including a doped silicon-germanium alloy base region, an emitter including doped silicon and laterally contacting the base, and a collector including doped silicon and laterally contacting the base. Because the collector current is channeled through the doped silicon-germanium base region, the HBT can accommodate a greater current density than a comparable bipolar transistor employing a silicon channel. The base may also include an upper silicon base region and/or a lower silicon base region. In this case, the collector current is concentrated in the doped silicon-germanium base region, thereby minimizing noise introduced to carrier scattering at the periphery of the base. Further, parasitic capacitance is minimized because the emitter-base junction area is the same as the collector-base junction area.
    Type: Application
    Filed: July 24, 2012
    Publication date: November 15, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Tak H. Ning, Kevin K. Chan, Marwan H. Khater