Patents by Inventor Masaaki Nagase

Masaaki Nagase has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10648572
    Abstract: A valve with a built-in orifice includes a base section having a housing recess and first and second flow passages; a valve seat body; an inner disc; a valve element; and an orifice body, wherein the housing recess has a wide-diameter section and a narrow-diameter section, the first flow passage is connected to a space between a wall surface of the narrow-diameter section and the orifice body to communicate with a valve chamber, and the second flow passage communicates with the valve chamber through a through hole of the orifice body and a through hole of the valve seat body.
    Type: Grant
    Filed: July 25, 2017
    Date of Patent: May 12, 2020
    Assignee: FUJIKIN INCORPORATED
    Inventors: Yohei Sawada, Kaoru Hirata, Masaaki Nagase, Kouji Nishino, Nobukazu Ikeda
  • Patent number: 10604840
    Abstract: To provide a liquid level indicator and a liquid raw material vaporization feeder, in which the time to detect a switch from the liquid phase to the gas phase has reduced flow rate dependence, and also the detection time can be shortened. The present invention includes a chamber 2 that stores a liquid raw material, at least one protection tube 3 housing a resistance temperature detector for detecting the liquid level L1 in the chamber 2, and a flow controller 4 that controls the flow rate of the gas flowing out from the chamber 2 and feeds the same. The protection tube 3 is horizontally inserted into a sidewall 2a of the chamber 2 and fixed thereto.
    Type: Grant
    Filed: November 2, 2015
    Date of Patent: March 31, 2020
    Assignee: FUJIKIN INCORPORATED
    Inventors: Atsushi Hidaka, Masaaki Nagase, Kaoru Hirata, Satoru Yamashita, Keiji Hirao, Kouji Nishino, Nobukazu Ikeda
  • Publication number: 20200088561
    Abstract: The liquid level meter according to the present invention includes a resistive temperature detector, a temperature measuring body located above it, a temperature detecting unit detecting temperatures of the resistive temperature detector and the temperature measuring body, a current controlling unit determining a current value to be flowed through the resistive temperature detector so that the resistive temperature detector and the temperature measuring body become a predetermined temperature difference, a power supply unit supplying the current of the determined current value to the resistive temperature detector, and a liquid level detecting unit detecting a position of a liquid level.
    Type: Application
    Filed: December 22, 2017
    Publication date: March 19, 2020
    Applicant: FUJIKIN INCORPORATED
    Inventors: Atsushi HIDAKA, Takatoshi NAKATANI, Satoru YAMASHITA, Katsuyuki SUGITA, Kaoru HIRATA, Masaaki NAGASE, Kouji NISHINO, Nobukazu IKEDA
  • Publication number: 20200018736
    Abstract: A method for detecting the concentration of a specified gas contained in a mixed gas includes, in a pressure-type flow rate control device including a restriction portion, an upstream valve provided upstream of the restriction portion, and a pressure sensor for measuring the pressure between the restriction portion and the upstream valve, a step of flowing the mixed gas from the upstream side of the upstream valve in a state in which the pressure on the downstream side of the restriction portion is lower than the pressure on the upstream side of the restriction portion, a step of determining with a pressure sensor pressure drop characteristics occurring after the upstream valve is changed from an open to a closed state, and a step of determining the concentration of the specified gas in the mixed gas based on the pressure drop characteristics.
    Type: Application
    Filed: September 27, 2017
    Publication date: January 16, 2020
    Applicant: FUJIKIN INCORPORATED
    Inventors: Masaaki NAGASE, Kenji AIKAWA, Kaoru HIRATA, Takahiro IMAI, Tetsuo NARITOMI, Tsutomu SHINOHARA, Takahiro MATSUDA, Kouji NISHINO
  • Publication number: 20200011720
    Abstract: The flow rate measuring method is performed in a common gas supply system comprising a plurality of gas supply paths each having a first valve, and a gas measuring device formed downstream side of the plurality of gas supply paths, having a pressure sensor, a temperature sensor, and a downstream side second valve.
    Type: Application
    Filed: February 8, 2018
    Publication date: January 9, 2020
    Applicant: FUJIKIN INCORPORATED
    Inventors: Masaaki NAGASE, Yohei SAWADA, Kouji NISHINO, Nobukazu IKEDA
  • Publication number: 20190368757
    Abstract: A fluid sealing device and a pressure detector calibration device are provided to enable further reducing of errors between a sealing pressure and a set pressure in a fluid flow path.
    Type: Application
    Filed: May 30, 2019
    Publication date: December 5, 2019
    Applicant: FUJIKIN INCORPORATED
    Inventors: Masahiko TAKIMOTO, Masaaki NAGASE
  • Patent number: 10408742
    Abstract: To provide a concentration measurement method with which the concentrations of predetermined chemical components can be measured non-destructively, accurately, and rapidly by a simple means, up to the concentrations in trace amount ranges, as well as a concentration measurement method with which the concentrations of chemical components in a measurement target can be accurately and rapidly measured in real time up to the concentrations in nano-order trace amount ranges, and which is endowed with a versatility that can be realized in a variety of embodiments and modes. In the present invention, a measurement target is irradiated, in a time sharing manner, with light of a first wavelength and light of a second wavelength that have different optical absorption rates with respect to the measurement target. The light of each wavelength, arriving optically via the measurement target as a result of irradiation with the light of each wavelength, is received at a shared light-receiving sensor.
    Type: Grant
    Filed: November 20, 2015
    Date of Patent: September 10, 2019
    Assignees: FUJIKIN INCORPORATED, TOHOKU UNIVERSITY
    Inventors: Masaaki Nagase, Kouji Nishino, Nobukazu Ikeda, Michio Yamaji, Shigetoshi Sugawa, Rihito Kuroda
  • Publication number: 20190271636
    Abstract: A concentration measuring device includes a measuring cell having a flow passage and a translucent window, a light source for emitting light to the measuring cell through the window, a reflective member for reflecting light propagating through the measuring cell to the window, a light detector for detecting the light exiting from the window, a calculation part for calculating the concentration of the fluid on the basis of a detection signal from the light detector, and an optical device for guiding the light from the light source to the window and guiding the light from the window to the light detector.
    Type: Application
    Filed: July 25, 2017
    Publication date: September 5, 2019
    Applicants: TOKUSHIMA UNIVERSITY, FUJIKIN INCORPORATED
    Inventors: Yoshihiro DEGUCHI, Takashi FUKAWA, Taiki HATTORI, Masaaki NAGASE, Kazuteru TANAKA, Kouji NISHINO, Nobukazu IKEDA
  • Publication number: 20190263541
    Abstract: A thruster control device has an opening degree estimating section and an opening degree control section. The opening degree estimating section calculates an estimated opening degree of a valve showing a rate at which the valve is opened, based on a balance of an acting force applied to a valve element of the valve to adjust a quantity of combustion gas to be ejected from a thruster and a fluid force applied to the valve element by the ejected combustion gas. The opening degree control section determines a target opening degree based on the estimated opening degree to control the opening degree of the valve.
    Type: Application
    Filed: December 18, 2018
    Publication date: August 29, 2019
    Inventors: Yukihiro OKUMURA, Masaaki NAGASE
  • Patent number: 10371630
    Abstract: An inline concentration meter includes a light source unit emitting mixed light containing at least two wavelengths with a phase difference, a detecting unit including a light incident part for entering the mixed light emitted from the light source unit into a fluid passage of a detector body and at least two light detection parts receiving the mixed light passed through the fluid passage, a computing processor unit conducting frequency analyzes of detection signals of the mixed light output from the respective light detection parts and computing variations of intensities of the detection signals corresponding to absorbances in at least two frequency ranges to compute a concentration of fluid in the fluid passage based on the variations of the intensities of the detection signals, and a recording/displaying unit recording and displaying a value of the fluid concentration computed at the computing processor unit.
    Type: Grant
    Filed: July 18, 2014
    Date of Patent: August 6, 2019
    Assignees: Tokushima University, Fujikin Incorporated
    Inventors: Yoshihiro Deguchi, Masaaki Nagase, Nobukazu Ikeda, Michio Yamaji
  • Publication number: 20190227577
    Abstract: A pressure-type flow rate control device 1, while maintaining an upstream pressure P1 of an orifice 5 at approximately at least twice a downstream pressure P2, calculates a flow factor FF of a mixed gas consisting of two types of gases mixed at a mixture ratio of X:(1?X) by FF=(k/?){2/(?+1)}1/(??1)[?/{(?+1)R}]1/2 using an average density ?, an average specific heat ratio ?, and an average gas constant R of the mixed gas that are calculated by weighting the densities, specific heat ratios, and gas constants of the two types of gases at the mixture ratio, and calculates a flow rate Q of the mixed gas passing through the orifice by Q=FF·S·P1(1/T1)1/2, where S is the orifice cross section, and P1 and T1 are respectively the pressure and temperature of the mixed gas on the upstream side of the orifice.
    Type: Application
    Filed: August 24, 2017
    Publication date: July 25, 2019
    Applicant: FUJIKIN INCORPORATED
    Inventors: Masaaki NAGASE, Kaoru HIRATA, Kouji NISHINO, Nobukazu IKEDA
  • Publication number: 20190212176
    Abstract: A substrate processing system includes a gas supply unit having a first gas flow channel. A second gas flow channel of a flow rate measurement system is connected to the first gas flow channel. The flow rate measurement system further includes a third gas flow channel connected to the second gas flow channel, and a pressure sensor and a temperature sensor that measure a pressure and a temperature, respectively, in the third gas flow channel. In a method of an embodiment, a flow rate of a gas output from a flow rate controller of the gas supply unit is calculated using a build-up method. The flow rate of a gas is calculated without using the total volume of the first gas flow channel and the second gas flow channel and temperatures in the first gas flow channel and the second gas flow channel.
    Type: Application
    Filed: January 3, 2019
    Publication date: July 11, 2019
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Risako MIYOSHI, Norihiko AMIKURA, Kazuyuki MIURA, Masaaki NAGASE, Satoru YAMASHITA, Yohei SAWADA, Kouji NISHINO, Nobukazu IKEDA
  • Patent number: 10324029
    Abstract: A concentration measurement device including at least one light source; a measurement cell for containing a fluid to be measured; a splitter for dividing light from the light source into incident light being incident into the measurement cell and non-incident light not being incident into the measurement cell; a transmitted-light detector for detecting transmitted light that is the incident light having passed through the measurement cell; a non-incident light detector for detecting the non-incident light; and an arithmetic part for correcting a detection signal of the transmitted-light detector using a detection signal of the non-incident light detector.
    Type: Grant
    Filed: August 9, 2016
    Date of Patent: June 18, 2019
    Assignees: TOKUSHIMA UNIVERSITY, FUJIKIN INCORPORATED
    Inventors: Yoshihiro Deguchi, Masaaki Nagase, Michio Yamaji, Nobukazu Ikeda, Kouji Nishino, Masayoshi Kawashima, Kazuteru Tanaka
  • Publication number: 20190178389
    Abstract: A valve with a built-in orifice includes a base section having a housing recess and first and second flow passages; a valve seat body; an inner disc; a valve element; and an orifice body, wherein the housing recess has a wide-diameter section and a narrow-diameter section, the first flow passage is connected to a space between a wall surface of the narrow-diameter section and the orifice body to communicate with a valve chamber, and the second flow passage communicates with the valve chamber through a through hole of the orifice body and a through hole of the valve seat body.
    Type: Application
    Filed: July 25, 2017
    Publication date: June 13, 2019
    Applicant: FUJIKIN INCORPORATED
    Inventors: Yohei SAWADA, Kaoru HIRATA, Masaaki NAGASE, Kouji NISHINO, Nobukazu IKEDA
  • Publication number: 20190137309
    Abstract: In a method of calibrating a flow rate control device in which a flow rate is calibrated based on comparison with a flow rate measured by a flow rate reference gauge, a predetermined permissible error range is set for a plurality of flow rate settings, and the permissible error range of at least one specific flow rate setting among the plurality of flow rate settings is set to be smaller than the predetermined permissible error range.
    Type: Application
    Filed: June 22, 2017
    Publication date: May 9, 2019
    Applicant: FUJIKIN INCORPORATED
    Inventors: Yohei SAWADA, Masaaki NAGASE, Kouji NISHINO, Nobukazu IKEDA
  • Patent number: 10261522
    Abstract: The pressure-type flow controller includes a main body provided with a fluid passage, a control valve for pressure control fixed in a horizontal position to the main body, an on/off valve fixed in a vertical position to the main body on the downstream side of the control valve for pressure control, an orifice provided in the fluid passage on the upstream side of the on/off valve, and a pressure sensor fixed to the main body for detecting the internal pressure of the fluid passage between the control valve for pressure control and the orifice. The fluid passage includes a first passage portion in a horizontal position connected to the control valve for pressure control, a second passage portion in a vertical position connecting the first passage portion to the orifice, and a third passage portion in a horizontal position connecting the second passage portion to the pressure sensor.
    Type: Grant
    Filed: July 9, 2015
    Date of Patent: April 16, 2019
    Assignee: FUJIKIN INCORPORATED
    Inventors: Masaaki Nagase, Kaoru Hirata, Ryousuke Dohi, Kouji Nishino, Nobukazu Ikeda
  • Publication number: 20190094847
    Abstract: A pressure-type flow rate control device includes a restriction part, a control valve disposed upstream of the restriction part, an upstream pressure sensor, a downstream pressure sensor, and a controller that diagnoses flow rate control by using pressure drop data on a flow passage between the control valve and the restriction part and reference pressure drop data, wherein a close command is issued to the control valve and a shutoff valve provided downstream of the downstream pressure sensor, and the controller determines whether a predetermined critical expansion condition is satisfied by using outputs of the upstream pressure sensor and the downstream pressure sensor after the control valve is closed, and diagnoses flow rate control by using the pressure drop data acquired during a period in which the predetermined critical expansion condition is satisfied.
    Type: Application
    Filed: March 23, 2017
    Publication date: March 28, 2019
    Applicant: FUJIKIN INCORPORATED
    Inventors: Masaaki NAGASE, Kaoru HIRATA, Yohei SAWADA, Katsuyuki SUGITA, Kouji NISHINO, Nobukazu IKEDA
  • Patent number: 10222323
    Abstract: An inline concentration measurement device comprises: a measurement cell main body with a gas flow path formed; a light incident part with a window member connected to the main body; and a light receiving part with a window member connected to the main body, wherein the gas flow path includes a gas flow path for an optical path extending straight between the window members of the light incident part and the light receiving part, a first communication part making a gas inlet formed in the main body communicate with the gas flow path part for the optical path, and a second communication part making a gas outlet formed in the main body communicate with the gas flow path part for the optical path, and the first communication part obliquely extends from the gas inlet towards the window member of the light incident part.
    Type: Grant
    Filed: July 23, 2015
    Date of Patent: March 5, 2019
    Assignees: TOKUSHIMA UNIVERSITY, FUJIKIN INCORPORATED
    Inventors: Yoshihiro Deguchi, Masaaki Nagase, Nobukazu Ikeda, Michio Yamaji, Tadayuki Yakushijin
  • Publication number: 20190017855
    Abstract: A gas supply system includes a flow controller, a first shutoff valve provided downstream of the flow controller, a second shutoff valve provided in a first flow passage communicating with the downstream side of the first shutoff valve, a second flow passage branching from the first flow passage, a third shutoff valve provided in the second flow passage, a pressure sensor that detects a pressure in a flow passage surrounded by the first, second, and third shutoff valves, a temperature sensor that detects a temperature in the flow passage, a volume measuring tank having a known volume connected downstream of the third shutoff valve, and a controller that obtains a volume of the flow passage by applying Boyle's law to open and closed states of the third shutoff valve and calculates the flow rate using the passage volume and outputs of the pressure and temperature sensors.
    Type: Application
    Filed: January 12, 2017
    Publication date: January 17, 2019
    Applicant: FUJIKIN INCORPORATED
    Inventors: Yohei SAWADA, Nobukazu IKEDA, Kouji NISHINO, Masaaki NAGASE
  • Patent number: 10138844
    Abstract: A thrust control valve equipped with: a valve element, in which a gas injection passage, through which an operating gas is injected, is formed, with a valve-seating surface being formed in the gas injection passage; and a valve stem, which is provided in the interior of the gas injection passage and has a seated surface that makes contact with the valve-seating surface. A guide surface which makes contact with the inner circumferential surface of the gas injection passage of the valve element is formed on the outer circumferential surface of the valve stem. The guide surface is formed downstream from the seated surface in the direction of flow of the operating gas. A V-groove through which the operating gas flows is formed at the tip of the valve stem, downstream from the seated surface in which the guide surface is formed.
    Type: Grant
    Filed: October 18, 2013
    Date of Patent: November 27, 2018
    Assignee: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Shozo Hidaka, Atsushi Moriwaki, Kensuke Futahashi, Shuhei Hosaka, Masaaki Nagase, Kohei Kojima, Mitsuru Inada