Patents by Inventor Masahiko Hiratani

Masahiko Hiratani has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190362968
    Abstract: A method of producing a semiconductor nanoparticle, the method producing an indium- and phosphorus-containing semiconductor nanoparticle, in which the method includes preparing an indium-containing liquid (1) and a phosphorus-containing liquid (2), and spraying one of the liquid (1) or the liquid (2) from a spray unit in an inert gas and bringing a sprayed liquid droplet into contact with another liquid of the liquid (1) or the liquid (2), which is not sprayed, thereby mixing the liquid (1) and the liquid (2) to allow at least indium and phosphorus to react.
    Type: Application
    Filed: January 23, 2018
    Publication date: November 28, 2019
    Inventors: Shori KOSUDA, Yusuke MABUCHI, Masahiko HIRATANI, Taizo SANO, Akihiro WAKISAKA
  • Patent number: 8106441
    Abstract: A memory cell capacitor (C3) of a DRAM is formed by use of a MIM capacitor which uses as its electrode a metal wiring line of the same layer (M3) as metal wiring lines within a logic circuit (LOGIC), thereby enabling reduction of process costs. Higher integration is achievable by forming the capacitor using a high dielectric constant material and disposing it above a wiring layer in which bit lines (BL) are formed. In addition, using 2T cells makes it possible to provide a sufficient signal amount even when letting them operate with a low voltage. By commonizing the processes for fabricating capacitors in analog (ANALOG) and memory (MEM), it is possible to realize a semiconductor integrated circuit with the logic, analog and memory mounted together on one chip at low costs.
    Type: Grant
    Filed: August 23, 2010
    Date of Patent: January 31, 2012
    Assignee: Renesas Electronics Corporation
    Inventors: Satoru Akiyama, Takao Watanabe, Yuichi Matsui, Masahiko Hiratani
  • Publication number: 20100314676
    Abstract: A memory cell capacitor (C3) of a DRAM is formed by use of a MIM capacitor which uses as its electrode a metal wiring line of the same layer (M3) as metal wiring lines within a logic circuit (LOGIC), thereby enabling reduction of process costs. Higher integration is achievable by forming the capacitor using a high dielectric constant material and disposing it above a wiring layer in which bit lines (BL) are formed. In addition, using 2T cells makes it possible to provide a sufficient signal amount even when letting them operate with a low voltage. By commonizing the processes for fabricating capacitors in analog (ANALOG) and memory (MEM), it is possible to realize a semiconductor integrated circuit with the logic, analog and memory mounted together on one chip at low costs.
    Type: Application
    Filed: August 23, 2010
    Publication date: December 16, 2010
    Applicant: RENESAS TECHNOLOGY CORP.
    Inventors: Satoru Akiyama, Takao Watanabe, Yuichi Matsui, Masahiko Hiratani
  • Patent number: 7804118
    Abstract: A memory cell capacitor (C3) of a DRAM is formed by use of a MIM capacitor which uses as its electrode a metal wiring line of the same layer (M3) as metal wiring lines within a logic circuit (LOGIC), thereby enabling reduction of process costs. Higher integration is achievable by forming the capacitor using a high dielectric constant material and disposing it above a wiring layer in which bit lines (BL) are formed. In addition, using 2T cells makes it possible to provide a sufficient signal amount even when letting them operate with a low voltage. By commonizing the processes for fabricating capacitors in analog (ANALOG) and memory (MEM), it is possible to realize a semiconductor integrated circuit with the logic, analog and memory mounted together on one chip at low costs.
    Type: Grant
    Filed: December 10, 2009
    Date of Patent: September 28, 2010
    Assignee: Renesas Technology Corp.
    Inventors: Satoru Akiyama, Takao Watanabe, Yuichi Matsui, Masahiko Hiratani
  • Patent number: 7800153
    Abstract: The present invention relates to a structure of a capacitor, in particular using niobium pentoxide, of a semiconductor capacitor memory device. Since niobium pentoxide has a low crystallization temperature of 600° C. or less, niobium pentoxide can suppress the oxidation of a bottom electrode and a barrier metal by heat treatment. However, according to heat treatment at low temperature, carbon incorporated from CVD sources into the film is not easily oxidized or removed. Therefore, a problem that leakage current increases arises. As an insulator film of a capacitor, a layered film composed of niobium pentoxide film and a tantalum pentoxide film, or a layered film composed of niobium pentoxide films is used. By the use of the niobium pentoxide film, the dielectric constant of the capacitor can be made high and the crystallization temperature can be made low. By multiple-stage formation of the dielectric film, leakage current can be decreased.
    Type: Grant
    Filed: December 4, 2008
    Date of Patent: September 21, 2010
    Assignee: Renesas Electronics Corporation
    Inventors: Yuichi Matsui, Masahiko Hiratani
  • Publication number: 20100084698
    Abstract: A memory cell capacitor (C3) of a DRAM is formed by use of a MIM capacitor which uses as its electrode a metal wiring line of the same layer (M3) as metal wiring lines within a logic circuit (LOGIC), thereby enabling reduction of process costs. Higher integration is achievable by forming the capacitor using a high dielectric constant material and disposing it above a wiring layer in which bit lines (BL) are formed. In addition, using 2T cells makes it possible to provide a sufficient signal amount even when letting them operate with a low voltage. By commonizing the processes for fabricating capacitors in analog (ANALOG) and memory (MEM), it is possible to realize a semiconductor integrated circuit with the logic, analog and memory mounted together on one chip at low costs.
    Type: Application
    Filed: December 10, 2009
    Publication date: April 8, 2010
    Applicant: RENESAS TECHNOLOGY CORP.
    Inventors: Satoru Akiyama, Takao Watanabe, Yuichi Matsui, Masahiko Hiratani
  • Patent number: 7683419
    Abstract: A memory cell capacitor (C3) of a DRAM is formed by use of a MIM capacitor which uses as its electrode a metal wiring line of the same layer (M3) as metal wiring lines within a logic circuit (LOGIC), thereby enabling reduction of process costs. Higher integration is achievable by forming the capacitor using a high dielectric constant material and disposing it above a wiring layer in which bit lines (BL) are formed. In addition, using 2T cells makes it possible to provide a sufficient signal amount even when letting them operate with a low voltage. By commonizing the processes for fabricating capacitors in analog (ANALOG) and memory (MEM), it is possible to realize a semiconductor integrated circuit with the logic, analog and memory mounted together on one chip at low costs.
    Type: Grant
    Filed: June 26, 2008
    Date of Patent: March 23, 2010
    Assignee: Renesas Technology Corp.
    Inventors: Satoru Akiyama, Takao Watanabe, Yuichi Matsui, Masahiko Hiratani
  • Publication number: 20090085086
    Abstract: The present invention relates to a structure of a capacitor, in particular using niobium pentoxide, of a semiconductor capacitor memory device. Since niobium pentoxide has a low crystallization temperature of 600° C. or less, niobium pentoxide can suppress the oxidation of a bottom electrode and a barrier metal by heat treatment. However, according to heat treatment at low temperature, carbon incorporated from CVD sources into the film is not easily oxidized or removed. Therefore, a problem that leakage current increases arises. As an insulator film of a capacitor, a layered film composed of niobium pentoxide film and a tantalum pentoxide film, or a layered film composed of niobium pentoxide films is used. By the use of the niobium pentoxide film, the dielectric constant of the capacitor can be made high and the crystallization temperature can be made low. By multiple-stage formation of the dielectric film, leakage current can be decreased.
    Type: Application
    Filed: December 4, 2008
    Publication date: April 2, 2009
    Inventors: Yuichi Matsui, Masahiko Hiratani
  • Patent number: 7511327
    Abstract: The present invention relates to a structure of a capacitor, in particular using niobium pentoxide, of a semiconductor capacitor memory device. Since niobium pentoxide has a low crystallization temperature of 600° C. or less, niobium pentoxide can suppress the oxidation of a bottom electrode and a barrier metal by heat treatment. However, according to heat treatment at low temperature, carbon incorporated from CVD sources into the film is not easily oxidized or removed. Therefore, a problem that leakage current increases arises. As an insulator film of a capacitor, a layered film composed of niobium pentoxide film and a tantalum pentoxide film, or a layered film composed of niobium pentoxide films is used. By the use of the niobium pentoxide film, the dielectric constant of the capacitor can be made high and the crystallization temperature can be made low. By multiple-stage formation of the dielectric film, leakage current can be decreased.
    Type: Grant
    Filed: July 25, 2007
    Date of Patent: March 31, 2009
    Assignee: Renesas Technology Corp.
    Inventors: Yuichi Matsui, Masahiko Hiratani
  • Publication number: 20080265300
    Abstract: A memory cell capacitor (C3) of a DRAM is formed by use of a MIM capacitor which uses as its electrode a metal wiring line of the same layer (M3) as metal wiring lines within a logic circuit (LOGIC), thereby enabling reduction of process costs. Higher integration is achievable by forming the capacitor using a high dielectric constant material and disposing it above a wiring layer in which bit lines (BL) are formed. In addition, using 2T cells makes it possible to provide a sufficient signal amount even when letting them operate with a low voltage. By commonizing the processes for fabricating capacitors in analog (ANALOG) and memory (MEM), it is possible to realize a semiconductor integrated circuit with the logic, analog and memory mounted together on one chip at low costs.
    Type: Application
    Filed: June 26, 2008
    Publication date: October 30, 2008
    Inventors: Satoru Akiyama, Takao Watanabe, Yuichi Matsui, Masahiko Hiratani
  • Patent number: 7408218
    Abstract: A memory cell capacitor (C3) of a DRAM is formed by use of a MIM capacitor which uses as its electrode a metal wiring line of the same layer (M3) as metal wiring lines within a logic circuit (LOGIC), thereby enabling reduction of process costs. Higher integration is achievable by forming the capacitor using a high dielectric constant material and disposing it above a wiring layer in which bit lines (BL) are formed. In addition, using 2T cells makes it possible to provide a sufficient signal amount even when letting them operate with a low voltage. By commonizing the processes for fabricating capacitors in analog (ANALOG) and memory (MEM), it is possible to realize a semiconductor integrated circuit with the logic, analog and memory mounted together on one chip at low costs.
    Type: Grant
    Filed: December 14, 2001
    Date of Patent: August 5, 2008
    Assignee: Renesas Technology Corporation
    Inventors: Satoru Akiyama, Takao Watanabe, Yuichi Matsui, Masahiko Hiratani
  • Publication number: 20080035979
    Abstract: The present invention relates to a structure of a capacitor, in particular using niobium pentoxide, of a semiconductor capacitor memory device. Since niobium pentoxide has a low crystallization temperature of 600° C. or less, niobium pentoxide can suppress the oxidation of a bottom electrode and a barrier metal by heat treatment. However, according to heat treatment at low temperature, carbon incorporated from CVD sources into the film is not easily oxidized or removed. Therefore, a problem that leakage current increases arises. As an insulator film of a capacitor, a layered film composed of niobium pentoxide film and a tantalum pentoxide film, or a layered film composed of niobium pentoxide films is used. By the use of the niobium pentoxide film, the dielectric constant of the capacitor can be made high and the crystallization temperature can be made low. By multiple-stage formation of the dielectric film, leakage current can be decreased.
    Type: Application
    Filed: July 25, 2007
    Publication date: February 14, 2008
    Inventors: Yuichi Matsui, Masahiko Hiratani
  • Patent number: 7265407
    Abstract: The present invention relates to a structure of a capacitor, in particular using niobium pentoxide, of a semiconductor capacitor memory device. Since niobium pentoxide has a low crystallization temperature of 600° C. or less, niobium pentoxide can suppress the oxidation of a bottom electrode and a barrier metal by heat treatment. However, according to heat treatment at low temperature, carbon incorporated from CVD sources into the film is not easily oxidized or removed. Therefore, a problem that leakage current increases arises. As an insulator film of a capacitor, a layered film composed of a niobium pentoxide film and a tantalum pentoxide film, or a layered film composed of niobium pentoxide films is used. By the use of the niobium pentoxide film, the dielectric constant of the capacitor can be made high and the crystallization temperature can be made low. By multiple-stage formation of the dielectric film, leakage current can be decreased.
    Type: Grant
    Filed: October 5, 2005
    Date of Patent: September 4, 2007
    Assignee: Renesas Technology Corp.
    Inventors: Yuichi Matsui, Masahiko Hiratani
  • Patent number: 7259058
    Abstract: A ruthenium electrode with a low amount of oxygen contamination and high thermal stability is formed by a chemical vapor deposition method. In the chemical vapor deposition method using an organoruthenium compound as a precursor, the introduction of an oxidation gas is limited to when the precursor is supplying, and the reaction is allowed to occur at a low oxygen partial pressure. Consequently, it is possible to form a ruthenium film with a low amount of oxygen contamination. Further, after formation of the ruthenium film, annealing at not less than the formation temperature is performed, thereby forming a ruthenium film with high thermal stability.
    Type: Grant
    Filed: December 18, 2001
    Date of Patent: August 21, 2007
    Assignee: Renesas Techonology Corp.
    Inventors: Yasuhiro Shimamoto, Masahiko Hiratani, Yuichi Matsui, Satoshi Yamamoto, Toshihide Nabatame, Toshio Ando, Hiroshi Sakuma, Shinpei Iijima
  • Publication number: 20070001244
    Abstract: In a method for manufacturing an FET having a gate insulation film with an SiO2 equivalent thickness of 2 nm or more and capable of suppressing the leak current to 1/100 or less compared with existent SiO2 films, an SiO2 film of 0.5 nm or more is formed at a boundary between an Si substrate (polycrystalline silicon gate) and a high dielectric insulation film, and the temperature for forming the SiO2 film is made higher than the source-drain activating heat treatment temperature in the subsequent steps. As such, a shifting threshold voltage by the generation of static charges or lowering of a drain current caused by degradation of mobility can be prevented so as to reduce electric power consumption and increase current in a field effect transistor of a smaller size.
    Type: Application
    Filed: September 7, 2006
    Publication date: January 4, 2007
    Inventors: Yasuhiro Shimamoto, Katsunori Obata, Kazuyoshi Torii, Masahiko Hiratani
  • Patent number: 7119407
    Abstract: In a method for manufacturing an FET having a gate insulation film with an SiO2 equivalent thickness of 2 nm or more and capable of suppressing the leak current to 1/100 or less compared with existent SiO2 films, an SiO2 film of 0.5 nm or more is formed at a boundary between an Si substrate (polycrystalline silicon gate) and a high dielectric insulation film, and the temperature for forming the SiO2 film is made higher than the source-drain activating heat treatment temperature in the subsequent steps. As such, a shifting threshold voltage by the generation of static charges or lowering of a drain current caused by degradation of mobility can be prevented so as to reduce electric power consumption and increase current in a field effect transistor of a smaller size.
    Type: Grant
    Filed: July 28, 2004
    Date of Patent: October 10, 2006
    Assignee: Renesas Technology Corporation
    Inventors: Yasuhiro Shimamoto, Katsunori Obata, Kazuyoshi Torii, Masahiko Hiratani
  • Publication number: 20060027851
    Abstract: The present invention relates to a structure of a capacitor, in particular using niobium pentoxide, of a semiconductor capacitor memory device. Since niobium pentoxide has a low crystallization temperature of 600° C. or less, niobium pentoxide can suppress the oxidation of a bottom electrode and a barrier metal by heat treatment. However, according to heat treatment at low temperature, carbon incorporated from CVD sources into the film is not easily oxidized or removed. Therefore, a problem that leakage current increases arises. As an insulator film of a capacitor, a layered film composed of a niobium pentoxide film and a tantalum pentoxide film, or a layered film composed of niobium pentoxide films is used. By the use of the niobium pentoxide film, the dielectric constant of the capacitor can be made high and the crystallization temperature can be made low. By multiple-stage formation of the dielectric film, leakage current can be decreased.
    Type: Application
    Filed: October 5, 2005
    Publication date: February 9, 2006
    Inventors: Yuichi Matsui, Masahiko Hiratani
  • Patent number: 6992022
    Abstract: A process for forming the lower and upper electrodes of a high dielectric constant capacitor in a semiconductor device from an organoruthenium compound by chemical vapor deposition. This chemical vapor deposition technique employs an organoruthenium compound, an oxidizing gas, and a gas (such as argon) which is hardly adsorbed to the ruthenium surface or a gas (such as ethylene) which is readily adsorbed to the ruthenium surface. This process efficiently forms a ruthenium film with good conformality in a semiconductor device.
    Type: Grant
    Filed: March 9, 2004
    Date of Patent: January 31, 2006
    Assignee: Renesas Technology Corp.
    Inventors: Yasuhiro Shimamoto, Masahiko Hiratani, Yuichi Matsui, Toshihide Nabatame
  • Patent number: 6989304
    Abstract: In the method of manufacturing a semiconductor device according to this invention, when an interlayer insulating film is fabricated such that an opening is cylindrical and low-pressure and long-throw sputtering is used for forming a lower ruthenium electrode, a ruthenium film can be deposited on the side wall of a deep hole. Further, after removing the ruthenium film deposited on the upper surface of the interlayer insulating film, a dielectric material comprising, for example, a tantalum pentoxide film is deposited. Successively, an upper ruthenium electrode is deposited using, for example, Ru(EtCp)2 as a starting material and by chemical vapor deposition of conveying the starting material by bubbling. The upper ruthenium electrode can be formed with good coverage by using conditions that the deposition rate of the ruthenium film depends on the formation temperature (reaction controlling condition). This invention can provide a fine concave type capacitor having a ruthenium electrode.
    Type: Grant
    Filed: August 11, 2000
    Date of Patent: January 24, 2006
    Assignee: Renesas Technology Corp.
    Inventors: Yuichi Matsui, Masahiko Hiratani, Yasuhiro Shimamoto, Toshihide Nabatame
  • Patent number: 6955959
    Abstract: The present invention relates to a structure of a capacitor, in particular using niobium pentoxide, of a semiconductor capacitor memory device. Since niobium pentoxide has a low crystallization temperature of 600° C. or less, niobium pentoxide can suppress the oxidation of a bottom electrode and a barrier metal by heat treatment. However, according to heat treatment at low temperature, carbon incorporated from CVD sources into the film is not easily oxidized or removed. Therefore, a problem that leakage current increases arises. As an insulator film of a capacitor, a layered film composed of a niobium pentoxide film and a tantalum pentoxide film, or a layered film composed of niobium pentoxide films is used. By the use of the niobium pentoxide film, the dielectric constant of the capacitor can be made high and the crystallization temperature can be made low. By multiple-stage formation of the dielectric film, leakage current can be decreased.
    Type: Grant
    Filed: May 26, 2004
    Date of Patent: October 18, 2005
    Assignee: Renesas Technology Corp.
    Inventors: Yuichi Matsui, Masahiko Hiratani