Patents by Inventor Masahiko Hiratani

Masahiko Hiratani has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20030107073
    Abstract: A disadvantage upon heat treatment in an oxygen atmosphere of a dielectric film formed on a lower electrode of capacitance device of DRAM that oxygen permeating the lower electrode oxidizes a barrier layer to form an oxide layer of high resistance and low dielectric constant is prevented. An Ru silicide layer is formed on the surface of a plug in a through hole formed below a lower electrode for an information storage capacitance device C and an Ru silicon nitride layer is formed further on the surface of the Ru silicide layer. Upon high temperature heat treatment in an oxygen atmosphere conducted in the step of forming a dielectric film on the lower electrode, the Ru silicon nitride layer is oxidized sacrificially into an Ru silicon oxynitride to prevent progress of oxidation in the Ru silicide layer.
    Type: Application
    Filed: December 18, 2002
    Publication date: June 12, 2003
    Applicant: Hitachi, Ltd.
    Inventors: Shinpei Iijima, Yuzuru Ohji, Masato Kunitomo, Masahiko Hiratani, Yuichi Matsui, Hiroyuki Ohta, Yukihiro Kumagai
  • Patent number: 6576928
    Abstract: By using a solid solution of tantalum pentoxide and niobium pentoxide as a dielectric film installed between upper electrode and lower electrode in a capacitor which is used in a semiconductor device, the capacitor structure can be simplified to improve reliability of the semiconductor device while reducing the production cost thereof.
    Type: Grant
    Filed: August 16, 2001
    Date of Patent: June 10, 2003
    Assignee: Hitachi, Ltd.
    Inventors: Masahiko Hiratani, Shinichiro Kimura, Tomoyuki Hamada
  • Patent number: 6555429
    Abstract: In a semiconductor device including a plurality of memory cells, a deposition preventing film is formed on an interlayer insulating film in which a plurality of holes are formed, or a seed film is selectively formed on the interlayer insulating film and on an inner surface and a bottom surface of the holes. A film of Ru, Ir or Pt is deposited by chemical vapor deposition on the deposition preventing film, or on the interlayer insulating film by utilizing the seed film, under the condition where underlayer dependency occurs. In consequence, lower electrodes are formed in accordance with a pattern of the deposition preventing film or the seed film. A dielectric film is formed on the lower electrodes and the deposition preventing film at a predetermined temperature. The material of the lower electrodes does not lose conduction even when exposed to the predetermined temperature employed for forming the dielectric film. Upper electrodes are further formed on the dielectric film.
    Type: Grant
    Filed: March 19, 2001
    Date of Patent: April 29, 2003
    Assignee: Hitachi, Ltd.
    Inventors: Yuichi Matsui, Masahiko Hiratani, Yasuhiro Shimamoto, Yoshitaka Nakamura, Toshihide Nabatame
  • Patent number: 6544834
    Abstract: An integrated semiconductor device has an improved reliability and is adapted to a higher degree of integration without reducing the accumulated electric charge of each information storage capacity element. The semiconductor device is provided with a DRAM having memory cells, each comprising an information storage capacity element C connected in series to a memory cell selection MISFET Qs formed on a main surface of a semiconductor substrate 1 and having a lower electrode 54, a capacity insulating film 58 and an upper electrode 59. The lower electrode 54 is made of ruthenium film oriented in a particular plane bearing, e.g., a (002) plane, and the capacity insulating film 58 is made of a polycrystalline tantalum film obtained by thermally treating an amorphous tantalum oxide film containing crystal of tantalum oxide in an as-deposited state for crystallization.
    Type: Grant
    Filed: December 19, 2000
    Date of Patent: April 8, 2003
    Assignee: Hitachi, Ltd.
    Inventors: Yasuhiro Sugawara, Shinpei Iijima, Yuzuru Oji, Naruhiko Nakanishi, Misuzu Kanai, Masahiko Hiratani
  • Patent number: 6534375
    Abstract: A disadvantage upon heat treatment in an oxygen atmosphere of a dielectric film formed on a lower electrode of capacitance device of DRAM that oxygen permeating the lower electrode oxidizes a barrier layer to form an oxide layer of high resistance and low dielectric constant is prevented. An Ru silicide layer is formed on the surface of a plug in a through hole formed below a lower electrode for an information storage capacitance device C and an Ru silicon nitride layer is formed further on the surface of the Ru silicide layer. Upon high temperature heat treatment in an oxygen atmosphere conducted in the step of forming a dielectric film on the lower electrode, the Ru silicon nitride layer is oxidized sacrificially into an Ru silicon oxynitride to prevent progress of oxidation in the Ru silicide layer.
    Type: Grant
    Filed: August 8, 2001
    Date of Patent: March 18, 2003
    Assignee: Hitachi, Ltd.
    Inventors: Shinpei Iijima, Yuzuru Ohji, Masato Kunitomo, Masahiko Hiratani, Yuichi Matsui, Hiroyuki Ohta, Yukihiro Kumagai
  • Publication number: 20030042557
    Abstract: In a method for manufacturing an FET having a gate insulation film with an SiO2 equivalent thickness of 2 nm or more and capable of suppressing the leak current to {fraction (1/100)} or less compared with existent SiO2 films, an SiO2 film of 0.5 nm or more is formed at a boundary between an Si substrate (polycrystalline silicon gate) and a high dielectric insulation film, and the temperature for forming the SiO2 film is made higher than the source-drain activating heat treatment temperature in the subsequent steps. As such, a shifting threshold voltage by the generation of static charges or lowering of a drain current caused by degradation of mobility can be prevented so as to reduce electric power consumption and increase current in a field effect transistor of a smaller size.
    Type: Application
    Filed: August 13, 2002
    Publication date: March 6, 2003
    Inventors: Yasuhiro Shimamoto, Katsunori Obata, Kazuyoshi Torii, Masahiko Hiratani
  • Patent number: 6521494
    Abstract: In a semiconductor device including a plurality of memory cells, a deposition preventing film is formed on an interlayer insulating film in which a plurality of holes are formed, or a seed film is selectively formed on the interlayer insulating film and on an inner surface and a bottom surface of the holes. A film of Ru, Ir or Pt is deposited by chemical vapor deposition on the deposition preventing film, or on the interlayer insulating film by utilizing the seed film, under the condition where underlayer dependency occurs. In consequence, lower electrodes are formed in accordance with a pattern of the deposition preventing film or the seed film. A dielectric film is formed on the lower electrodes and the deposition preventing film at a predetermined temperature. The material of the lower electrodes does not lose conduction even when exposed to the predetermined temperature employed for forming the dielectric film. Upper electrodes are further formed on the dielectric film.
    Type: Grant
    Filed: August 5, 2002
    Date of Patent: February 18, 2003
    Assignee: Hitachi, Ltd.
    Inventors: Yuichi Matsui, Masahiko Hiratani, Yasuhiro Shimamoto, Yoshitaka Nakamura, Toshihide Nabatame
  • Patent number: 6509246
    Abstract: A semiconductor integrated circuit in which the storage capacitor has an increased capacitance and a decreased leakage current. The storage capacitor is formed by the steps of: forming a polysilicon bottom electrode having semispherical silicon crystals formed thereon; performing plasma nitriding on the surface of said bottom electrode at a temperature lower than 550° C., thereby forming a film of silicon nitride having a film thickness smaller than 1.5 nm; and depositing a film of amorphous tantalum pentoxide and then crystallizing said amorphous tantalum pentoxide. The silicon nitride film has improved resistance to oxidation and also has a reduced leakage current. As a result, the polysilicon bottom electrode becomes resistant to oxidation and the storage capacitor increases in capacitance and decreases in leakage current.
    Type: Grant
    Filed: June 11, 2001
    Date of Patent: January 21, 2003
    Assignee: Hitachi, Ltd.
    Inventors: Hiroshi Miki, Yasuhiro Shimamoto, Masahiko Hiratani, Tomoyuki Hamada
  • Patent number: 6503791
    Abstract: In a semiconductor device including a plurality of memory cells, a deposition preventing film is formed on an interlayer insulating film in which a plurality of holes are formed, or a seed film is selectively formed on the interlayer insulating film and on an inner surface and a bottom surface of the holes. A film of Ru, Ir or Pt is deposited by chemical vapor deposition on the deposition preventing film, or on the interlayer insulating film by utilizing the seed film, under the condition where underlayer dependency occurs. In consequence, lower electrodes are formed in accordance with a pattern of the deposition preventing film or the seed film.
    Type: Grant
    Filed: January 24, 2001
    Date of Patent: January 7, 2003
    Assignee: Hitachi, Ltd.
    Inventors: Yuichi Matsui, Masahiko Hiratani, Yasuhiro Shimamoto, Yoshitaka Nakamura, Toshihide Nabatame
  • Publication number: 20020192899
    Abstract: A process for forming the lower and upper electrodes of a high dielectric constant capacitor in a semiconductor device from an organoruthenium compound by chemical vapor deposition. This chemical vapor deposition technique employs an organoruthenium compound, an oxidizing gas, and a gas (such as argon) which is hardly adsorbed to the ruthenium surface or a gas (such as ethylene) which is readily adsorbed to the ruthenium surface. This process efficiently forms a ruthenium film with good conformality in a semiconductor device.
    Type: Application
    Filed: March 21, 2002
    Publication date: December 19, 2002
    Inventors: Yasuhiro Shimamoto, Masahiko Hiratani, Yuichi Matsui, Toshihide Nabatame
  • Publication number: 20020192896
    Abstract: In a semiconductor device including a plurality of memory cells, a deposition preventing film is formed on an interlayer insulating film in which a plurality of holes are formed, or a seed film is selectively formed on the interlayer insulating film and on an inner surface and a bottom surface of the holes. A film of Ru, Ir or Pt is deposited by chemical vapor deposition on the deposition preventing film, or on the interlayer insulating film by utilizing the seed film, under the condition where underlayer dependency occurs. In consequence, lower electrodes are formed in accordance with a pattern of the deposition preventing film or the seed film. A dielectric film is formed on the lower electrodes and the deposition preventing film at a predetermined temperature. The material of the lower electrodes does not lose conduction even when exposed to the predetermined temperature employed for forming the dielectric film. Upper electrodes are further formed on the dielectric film.
    Type: Application
    Filed: August 5, 2002
    Publication date: December 19, 2002
    Applicant: Hitachi, Ltd.
    Inventors: Yuichi Matsui, Masahiko Hiratani, Yasuhiro Shimamoto, Yoshitaka Nakamura, Toshihide Nabatame
  • Patent number: 6483143
    Abstract: In a semiconductor device including a plurality of memory cells, a deposition preventing film is formed on an interlayer insulating film in which a plurality of holes are formed, or a seed film is selectively formed on the interlayer insulating film and on an inner surface and a bottom surface of the holes. A film of Ru, Ir or Pt is deposited by chemical vapor deposition on the deposition preventing film, or on the interlayer insulating film by utilizing the seed film, under the condition where underlayer dependency occurs. In consequence, lower electrodes are formed in accordance with a pattern of the deposition preventing film or the seed film. A dielectric film is formed on the lower electrodes and the deposition preventing film at a predetermined temperature. The material of the lower electrodes does not lose conduction even when exposed to the predetermined temperature employed for forming the dielectric film. Upper electrodes are further formed on the dielectric film.
    Type: Grant
    Filed: March 19, 2001
    Date of Patent: November 19, 2002
    Assignee: Hitachi, Ltd.
    Inventors: Yuichi Matsui, Masahiko Hiratani, Yasuhiro Shimamoto, Yoshitaka Nakamura, Toshihide Nabatame
  • Publication number: 20020151152
    Abstract: A capacitor having an equivalent thickness of 3.0 nm or less, with a sufficient static capacitance and less leakage current in a reduced size, constituted by stacking an interfacial film 21 having a physical thickness of 2.5 nm or more for suppressing tunnel leakage current and a high dielectric film 22 comprising tantalum pentaoxide on lower electrode 19, 20 comprising rugged polycrystal silicon film, the interfacial film 21 comprising a nitride film formed by an LPCVD method, for example, from Al2O3, a mixed phase of Al2O3 and SiO2, ZrSiO4, HfSiO4, a mixed phase of Y2O3 and SiO2, and a mixed phase of La2O3 and SiO2.
    Type: Application
    Filed: April 10, 2002
    Publication date: October 17, 2002
    Inventors: Yasuhiro Shimamoto, Hiroshi Miki, Masahiko Hiratani
  • Patent number: 6451665
    Abstract: Described is a manufacturing method of an integrated circuit which uses a thin film such as platinum or BST as a hard mask upon patterning ruthenium or the like, thereby making it possible to form a device without removing the hard mask. In addition, the invention method makes it possible to interpose a protecting film such as platinum in order to prevent, upon removing a resist used for the patterning of the hard mask, an underlying ruthenium film or the like from being damaged.
    Type: Grant
    Filed: December 13, 1999
    Date of Patent: September 17, 2002
    Assignee: Hitachi, Ltd.
    Inventors: Takashi Yunogami, Kazuo Nojiri, Yuzuru Ohji, Sukeyoshi Tsunekawa, Masahiko Hiratani, Yuichi Matsui
  • Publication number: 20020102826
    Abstract: A ruthenium electrode with a low amount of oxygen contamination and high thermal stability is formed by a chemical vapor deposition method. In the chemical vapor deposition method using an organoruthenium compound as a precursor, the introduction of an oxidation gas is limited to when the precursor is supplying, and the reaction is allowed to occur at a low oxygen partial pressure. Consequently, it is possible to form a ruthenium film with a low amount of oxygen contamination. Further, after formation of the ruthenium film, annealing at not less than the formation temperature is performed, thereby forming a ruthenium film with high thermal stability.
    Type: Application
    Filed: December 18, 2001
    Publication date: August 1, 2002
    Inventors: Yasuhiro Shimamoto, Masahiko Hiratani, Yuichi Matsui, Satoshi Yamamoto, Toshihide Nabatame, Toshio Ando, Hiroshi Sakuma, Shinpei Iljima
  • Publication number: 20020074582
    Abstract: By using a solid solution of tantalum pentoxide and niobium pentoxide as a dielectric film installed between upper electrode and lower electrode in a capacitor which is used in a semiconductor device, the capacitor structure can be simplified to improve reliability of the semiconductor device while reducing the production cost thereof.
    Type: Application
    Filed: August 16, 2001
    Publication date: June 20, 2002
    Inventors: Masahiko Hiratani, Shinichiro Kimura, Tomoyuki Hamada
  • Publication number: 20020047147
    Abstract: Disclosed is a semiconductor device having ferroelectric capacitors above a principal surface of a substrate and a process for producing the same wherein an oriented polycrystal silicon film or an amorphous silicon film 52 is disposed on the whole area beneath a conductive diffusion barrier, 61 or 73, under a lower electrode, 62 or 74, of each ferroelectric capacitor formed in the device. As a result, the conductive diffusion barrier, the lower electrode and the capacitor ferroelectric film become oriented films; therefore, it is possible to reduce the signal variation in capacitors even in minute semiconductor devices, and obtain a highly reliable semiconductor device.
    Type: Application
    Filed: October 31, 2001
    Publication date: April 25, 2002
    Inventors: Keiko Kushida, Masahiko Hiratani, Kazuyoshi Torii, Shinichiro Takatani, Hiroshi Miki, Yuuichi Matsui, Yoshihisa Fujisaki
  • Publication number: 20020043679
    Abstract: A semiconductor integrated circuit in which the storage capacitor has an increased capacitance and a decreased leakage current. The storage capacitor is formed by the steps of: forming a polysilicon bottom electrode having semispherical silicon crystals formed thereon; performing plasma nitriding on the surface of said bottom electrode at a temperature lower than 550° C., thereby forming a film of silicon nitride having a film thickness smaller than 1.5 nm; and depositing a film of amorphous tantalum pentoxide and then crystallizing said amorphous tantalum pentoxide. The silicon nitride film has improved resistance to oxidation and also has a reduced leakage current. As a result, the polysilicon bottom electrode becomes resistant to oxidation and the storage capacitor increases in capacitance and decreases in leakage current.
    Type: Application
    Filed: June 11, 2001
    Publication date: April 18, 2002
    Inventors: Hiroshi Miki, Yasuhiro Shimamoto, Masahiko Hiratani, Tomoyuki Hamada
  • Publication number: 20020030210
    Abstract: In a semiconductor device including a plurality of memory cells, a deposition preventing film is formed on an interlayer insulating film in which a plurality of holes are formed, or a seed film is selectively formed on the interlayer insulating film and on an inner surface and a bottom surface of the holes. A film of Ru, Ir or Pt is deposited by chemical vapor deposition on the deposition preventing film, or on the interlayer insulating film by utilizing the seed film, under the condition where underlayer dependency occurs. In consequence, lower electrodes are formed in accordance with a pattern of the deposition preventing film or the seed film. A dielectric film is formed on the lower electrodes and the deposition preventing film at a predetermined temperature. The material of the lower electrodes does not lose conduction even when exposed to the predetermined temperature employed for forming the dielectric film. Upper electrodes are further formed on the dielectric film.
    Type: Application
    Filed: January 24, 2001
    Publication date: March 14, 2002
    Inventors: Yuichi Matsui, Masahiko Hiratani, Yasuhiro Shimamoto, Yoshitaka Nakamura, Toshihide Nabatame
  • Publication number: 20020022357
    Abstract: A disadvantage upon heat treatment in an oxygen atmosphere of a dielectric film formed on a lower electrode of capacitance device of DRAM that oxygen permeating the lower electrode oxidizes a barrier layer to form an oxide layer of high resistance and low dielectric constant is prevented. An Ru silicide layer is formed on the surface of a plug in a through hole formed below a lower electrode for an information storage capacitance device C and an Ru silicon nitride layer is formed further on the surface of the Ru silicide layer. Upon high temperature heat treatment in an oxygen atmosphere conducted in the step of forming a dielectric film on the lower electrode, the Ru silicon nitride layer is oxidized sacrificially into an Ru silicon oxynitride to prevent progress of oxidation in the Ru silicide layer.
    Type: Application
    Filed: August 8, 2001
    Publication date: February 21, 2002
    Applicant: Hitachi, Ltd.
    Inventors: Shinpei Iijima, Yuzuru Ohji, Masato Kunitomo, Masahiko Hiratani, Yuichi Matsui, Hiroyuki Ohta, Yukihiro Kumagai