Patents by Inventor Masakatsu Suzuki

Masakatsu Suzuki has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6911351
    Abstract: The method of fabricating a nitride semiconductor of this invention includes the steps of forming, on a substrate, a first nitride semiconductor layer of AluGavInwN, wherein 0?u, v, w?1 and u+v+w=1; forming, in an upper portion of the first nitride semiconductor layer, plural convexes extending at intervals along a substrate surface direction; forming a mask film for covering bottoms of recesses formed between the convexes adjacent to each other; and growing, on the first nitride semiconductor layer, a second nitride semiconductor layer of AlxGayInzN, wherein 0?x, y, z?1 and x+y+z=1, by using, as a seed crystal, C planes corresponding to top faces of the convexes exposed from the mask film.
    Type: Grant
    Filed: January 16, 2003
    Date of Patent: June 28, 2005
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Isao Kidoguchi, Akihiko Ishibashi, Ryoko Miyanaga, Gaku Sugahara, Masakatsu Suzuki, Masahiro Kume, Yuzaburo Ban, Kiyoyuki Morita, Ayumu Tsujimura, Yoshiaki Hasegawa
  • Publication number: 20050122417
    Abstract: A solid-state image sensor of the present invention has optical units separating incident light into a plurality of color lights, each of which separates the incident light into one of the color lights; light receptors corresponding to the color lights, each of which is formed in a semiconductor substrate and converts one of the color lights separated by the optical units; and antireflection films, each of which reduces light reflection on a surface of the light receptor.
    Type: Application
    Filed: November 9, 2004
    Publication date: June 9, 2005
    Inventor: Masakatsu Suzuki
  • Patent number: 6861672
    Abstract: The semiconductor laser of this invention includes an active layer formed in a c-axis direction, wherein the active layer is made of a hexagonal-system compound semiconductor, and anisotropic strain is generated in a c plane of the active layer.
    Type: Grant
    Filed: November 6, 2001
    Date of Patent: March 1, 2005
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Satoshi Kamiyama, Masakatsu Suzuki, Takeshi Uenoyama, Kiyoshi Ohnaka, Akira Takamori, Masaya Mannoh, Isao Kidoguchi, Hideto Adachi, Akihiko Ishibashi, Toshiya Fukuhisa, Yasuhito Kumabuchi
  • Publication number: 20050031001
    Abstract: A semiconductor laser device (10) includes a resonant cavity (12) in which a quantum well active layer (11) made up of barrier layers of gallium nitride and well layers of indium gallium nitride is vertically sandwiched between at least light guide layers of n- and p-type aluminum gallium nitride. An end facet reflective film (13) is formed on a reflective end facet (10b) opposite to a light-emitting end facet (10a) in the resonant cavity (12). The end facet reflective film (13) has a structure including a plurality of unit reflective films (130), each of which is made up of a low-refractive-index film (13a) of silicon dioxide and a high-refractive-index film (13b) of niobium oxide. The low-and high-refractive-index films are deposited in this order on the end facet of the resonant cavity (12).
    Type: Application
    Filed: September 17, 2004
    Publication date: February 10, 2005
    Applicant: Matsushita Electric Industrial Co., Ltd.
    Inventors: Gaku Sugahara, Isao Kidoguchi, Ryoko Miyanaga, Masakatsu Suzuki, Masahiro Kume, Yusaburo Ban, Fukukazu Hirayama
  • Publication number: 20050003571
    Abstract: The semiconductor laser of this invention includes an active layer formed in a c-axis direction, wherein the active layer is made of a hexagonal-system compound semiconductor, and anisotropic strain is generated in a c plane of the active layer.
    Type: Application
    Filed: July 15, 2004
    Publication date: January 6, 2005
    Inventors: Satoshi Kamiyama, Masakatsu Suzuki, Takeshi Uenoyama, Kiyoshi Ohnaka, Akira Takamori, Masaya Mannoh, Isao Kidoguchi, Hideto Adachi, Akihiko Ishibashi, Toshiya Fukuhisa, Yasuhito Kumabuchi
  • Publication number: 20040213315
    Abstract: A semiconductor laser device includes: a first cladding layer, which is made of a nitride semiconductor of a first conductivity type and is formed over a substrate; an active layer, which is made of another nitride semiconductor and is formed over the first cladding layer; and a second cladding layer, which is made of still another nitride semiconductor of a second conductivity type and is formed over the active layer. A spontaneous-emission-absorbing layer, which is made of yet another nitride semiconductor of the first conductivity type and has such an energy gap as absorbing spontaneous emission that has been radiated from the active layer, is formed between the substrate and the first cladding layer.
    Type: Application
    Filed: May 25, 2004
    Publication date: October 28, 2004
    Applicant: Matsushita Electric Industrial Co., Ltd.
    Inventors: Masahiro Kume, Isao Kidoguchi, Yuzaburo Ban, Ryoko Miyanaga, Masakatsu Suzuki
  • Patent number: 6798811
    Abstract: A semiconductor laser device (10) includes a resonant cavity (12) in which a quantum well active layer (11) made up of barrier layers of gallium nitride and well layers of indium gallium nitride is vertically sandwiched between at least light guide layers of n- and p-type aluminum gallium nitride. An end facet reflective film (13) is formed on a reflective end facet (10b) opposite to a light-emitting end facet (10a) in the resonant cavity (12). The end facet reflective film (13) has a structure including a plurality of unit reflective films (130), each of which is made up of a low-refractive-index film (13a) of silicon dioxide and a high-refractive-index film (13b) of niobium oxide. The low-and high-refractive-index films are deposited in this order on the end facet of the resonant cavity (12).
    Type: Grant
    Filed: July 27, 2001
    Date of Patent: September 28, 2004
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Gaku Sugahara, Isao Kidoguchi, Ryoko Miyanaga, Masakatsu Suzuki, Masahiro Kume, Yusaburo Ban, Fukukazu Hirayama
  • Patent number: 6719098
    Abstract: An apparatus for restricting pivoting of a pivotal axle in a forklift. The forklift has an axle that is supported pivotally relative to a body frame. A damper is arranged between the body frame and the axle to permit and restrict pivoting of the axle. An electromagnetic valve locks the damper to restrict pivoting of the axle. The axle is free to pivot when the pivot angle of the axle relative to the body frame exceeds a predetermined reference angle. A controller refers to the pivot angle and other factors relating to vehicle stability when deciding whether to restrict pivoting of the axle.
    Type: Grant
    Filed: November 13, 1998
    Date of Patent: April 13, 2004
    Assignee: Kabushiki Kaisha Toyoda Jidoshokki Seisakusho
    Inventors: Kazuo Ishikawa, Kenji Sugiura, Masakatsu Suzuki, Takaki Ogawa
  • Patent number: 6720586
    Abstract: The method of fabricating a nitride semiconductor of this invention includes the steps of forming, on a substrate, a first nitride semiconductor layer of AluGavInwN, wherein 0≦u, v, w ≦1 and u+v+w=1; forming, in an upper portion of the first nitride semiconductor layer, plural convexes extending at intervals along a substrate surface direction; forming a mask film for covering bottoms of recesses formed between the convexes adjacent to each other; and growing, on the first nitride semiconductor layer, a second nitride semiconductor layer of AlxGayInzN, wherein 0≦x, y, z≦1 and x+y+z=1, by using, as a seed crystal, Cplanes corresponding to top faces of the convexes exposed from the mask film.
    Type: Grant
    Filed: November 15, 2000
    Date of Patent: April 13, 2004
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Isao Kidoguchi, Akihiko Ishibashi, Ryoko Miyanaga, Gaku Sugahara, Masakatsu Suzuki, Masahiro Kume, Yuzaburo Ban, Kiyoyuki Morita, Ayumu Tsujimura, Yoshiaki Hasegawa
  • Patent number: 6674100
    Abstract: Si and SiGeC layers are formed in an NMOS transistor on a Si substrate. A carrier accumulation layer is formed with the use of a discontinuous portion of a conduction band present at the heterointerface between the SiGeC and Si layers. Electrons travel in this carrier accumulation layer serving as a channel. In the SiGeC layer, the electron mobility is greater than in silicon, thus increasing the NMOS transistor in operational speed. In a PMOS transistor, a channel in which positive holes travel, is formed with the use of a discontinuous portion of a valence band at the interface between the SiGe and Si layers. In the SiGe layer, too, the positive hole mobility is greater than in the Si layer, thus increasing the PMOS transistor in operational speed. There can be provided a semiconductor device having field-effect transistors having channels lessened in crystal defect.
    Type: Grant
    Filed: April 5, 2002
    Date of Patent: January 6, 2004
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Minoru Kubo, Katsuya Nozawa, Masakatsu Suzuki, Takeshi Uenoyama, Yasuhito Kumabuchi
  • Publication number: 20030168653
    Abstract: A semiconductor light-emitting device of Group III-V compound semiconductors includes a quantum well layer, which is formed over a substrate and includes a barrier layer and a well layer that are alternately stacked one upon the other. The band gap of the well layer is narrower than that of the barrier layer. The well layer contains indium and nitrogen, while the barrier layer contains aluminum and nitrogen. In this structure, a tensile strain is induced in the barrier layer, and therefore, a compressive strain induced in the quantum well layer can be reduced. As a result, a critical thickness, at which pits are created, can be increased.
    Type: Application
    Filed: January 3, 2003
    Publication date: September 11, 2003
    Applicant: Matsushita Electric Industrial Co., Ltd.
    Inventors: Ayumu Tsujimura, Yoshiaki Hasegawa, Akihiko Ishibashi, Isao Kidoguchi, Yuzaburo Ban, Masakatsu Suzuki
  • Patent number: 6614059
    Abstract: A semiconductor light-emitting device of Group III-V compound semiconductors includes a quantum well layer, which is formed over a substrate and includes a barrier layer and a well layer that are alternately stacked one upon the other. The band gap of the well layer is narrower than that of the barrier layer. The well layer contains indium and nitrogen, while the barrier layer contains aluminum and nitrogen. In this structure, a tensile strain is induced in the barrier layer, and therefore, a compressive strain induced in the quantum well layer can be reduced. As a result, a critical thickness, at which pits are created, can be increased.
    Type: Grant
    Filed: January 7, 2000
    Date of Patent: September 2, 2003
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Ayumu Tsujimura, Yoshiaki Hasegawa, Akihiko Ishibashi, Isao Kidoguchi, Yuzaburo Ban, Masakatsu Suzuki
  • Publication number: 20030143771
    Abstract: The method of fabricating a nitride semiconductor of this invention includes the steps of forming, on a substrate, a first nitride semiconductor layer of AluGavInwN, wherein 0≦u, v, w≦1 and u+v+w=1; forming, in an upper portion of the first nitride semiconductor layer, plural convexes extending at intervals along a substrate surface direction; forming a mask film for covering bottoms of recesses formed between the convexes adjacent to each other; and growing, on the first nitride semiconductor layer, a second nitride semiconductor layer of AlxGayInzN, wherein 0≦x, y, z≦1 and x+y+z=1, by using, as a seed crystal, C planes corresponding to top faces of the convexes exposed from the mask film.
    Type: Application
    Filed: January 16, 2003
    Publication date: July 31, 2003
    Applicant: Matsushita Electric Industrial Co., Ltd.
    Inventors: Isao Kidoguchi, Akihiko Ishibashi, Ryoko Miyanaga, Gaku Sugahara, Masakatsu Suzuki, Masahiro Kume, Yuzaburo Ban, Kiyoyuki Morita, Ayumu Tsujimura, Yoshiaki Hasegawa
  • Publication number: 20030132448
    Abstract: A semiconductor light-emitting device of Group III-V compound semiconductors includes a quantum well layer, which is formed over a substrate and includes a barrier layer and a well layer that are alternately stacked one upon the other. The band gap of the well layer is narrower than that of the barrier layer. The well layer contains indium and nitrogen, while the barrier layer contains aluminum and nitrogen. In this structure, a tensile strain is induced in the barrier layer, and therefore, a compressive strain induced in the quantum well layer can be reduced. As a result, a critical thickness, at which pits are created, can be increased.
    Type: Application
    Filed: January 3, 2003
    Publication date: July 17, 2003
    Applicant: Matsushita Electric Industrial Co., Ltd.
    Inventors: Ayumu Tsujimura, Yoshiaki Hasegawa, Akihiko Ishibashi, Isao Kidoguchi, Yuzaburo Ban, Masakatsu Suzuki
  • Publication number: 20020105015
    Abstract: Si and SiGeC layers are formed in an NMOS transistor on a Si substrate. A carrier accumulation layer is formed with the use of a discontinuous portion of a conduction band present at the heterointerface between the SiGeC and Si layers. Electrons travel in this carrier accumulation layer serving as a channel. In the SiGeC layer, the electron mobility is greater than in silicon, thus increasing the NMOS transistor in operational speed. In a PMOS transistor, a channel in which positive holes travel, is formed with the use of a discontinuous portion of a valence band at the interface between the SiGe and Si layers. In the SiGe layer, too, the positive hole mobility is greater than in the Si layer, thus increasing the PMOS transistor in operational speed. There can be provided a semiconductor device having field-effect transistors having channels lessened in crystal defect.
    Type: Application
    Filed: April 5, 2002
    Publication date: August 8, 2002
    Applicant: MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.
    Inventors: Minoru Kubo, Katsuya Nozawa, Masakatsu Suzuki, Takeshi Uenoyama, Yasuhito Kumabuchi
  • Patent number: 6398252
    Abstract: An assembly for mounting a sensor, which measures a running state of a vehicle, on the vehicle at a predetermined positional relationship to the vehicle. The assembly includes a control unit for controlling the vehicle based on a signal transmitted from the sensor and a circuit board. The assembly further includes a case to be fixed to the vehicle for housing the circuit board and a holding member for holding the sensor at an inclination relative to the circuit board. The holding member maintains the positional relationship between the sensor and the vehicle when the case is fixed to the vehicle.
    Type: Grant
    Filed: October 5, 1998
    Date of Patent: June 4, 2002
    Assignee: Kabushiki Kaisha Toyoda Jidoshokki Seisakusho
    Inventors: Kazuo Ishikawa, Toshikazu Kamiya, Takaki Ogawa, Masakatsu Suzuki
  • Patent number: 6399970
    Abstract: Si and SiGeC layers are formed in an NMOS transistor on a Si substrate. A carrier accumulation layer is formed with the use of a discontinuous portion of a conduction band present at the heterointerface between the SiGeC and Si layers. Electrons travel in this carrier accumulation layer serving as a channel. In the SiGeC layer, the electron mobility is greater than in silicon, thus increasing the NMOS transistor in operational speed. In a PMOS transistor, a channel in which positive holes travel, is formed with the use of a discontinuous portion of a valence band at the interface between the SiGe and Si layers. In the SiGe layer, too, the positive hole mobility is greater than in the Si layer, thus increasing the PMOS transistor in operational speed. There can be provided a semiconductor device having field-effect transistors having channels lessened in crystal defect.
    Type: Grant
    Filed: September 16, 1997
    Date of Patent: June 4, 2002
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Minoru Kubo, Katsuya Nozawa, Masakatsu Suzuki, Takeshi Uenoyama, Yasuhito Kumabuchi
  • Publication number: 20020054616
    Abstract: The semiconductor laser of this invention includes an active layer formed in a c-axis direction, wherein the active layer is made of a hexagonal-system compound semiconductor, and anisotropic strain is generated in a c plane of the active layer.
    Type: Application
    Filed: November 6, 2001
    Publication date: May 9, 2002
    Inventors: Satoshi Kamiyama, Masakatsu Suzuki, Takeshi Uenoyama, Kiyoshi Ohnaka, Akira Takamori, Masaya Mannoh, Isao Kidoguchi, Hideto Adachi, Akihiko Ishibashi, Toshiya Fukuhisa, Yasuhito Kumabuchi
  • Publication number: 20020011617
    Abstract: Si and SiGeC layers are formed in an NMOS transistor on a Si substrate. A carrier accumulation layer is formed with the use of a discontinuous portion of a conduction band present at the heterointerface between the SiGeC and Si layers. Electrons travel in this carrier accumulation layer serving as a channel. In the SiGeC layer, the electron mobility is greater than in silicon, thus increasing the NMOS transistor in operational speed. In a PMOS transistor, a channel in which positive holes travel, is formed with the use of a discontinuous portion of a valence band at the interface between the SiGe and Si layers. In the SiGe layer, too, the positive hole mobility is greater than in the Si layer, thus increasing the PMOS transistor in operational speed. There can be provided a semiconductor device having field-effect transistors having channels lessened in crystal defect.
    Type: Application
    Filed: September 16, 1997
    Publication date: January 31, 2002
    Inventors: MINORU KUBO, KATSUYA NOZAWA, MASAKATSU SUZUKI, TAKESHI UENOYAMA, YASUHITO KUMABUCHI
  • Patent number: 6326638
    Abstract: The semiconductor laser of this invention includes an active layer formed in a c-axis direction, wherein the active layer is made of a hexagonal-system compound semiconductor, and anisotropic strain is generated in a c plane of the active layer.
    Type: Grant
    Filed: May 15, 1998
    Date of Patent: December 4, 2001
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Satoshi Kamiyama, Masakatsu Suzuki, Takeshi Uenoyama, Kiyoshi Ohnaka, Akira Takamori, Masaya Mannoh, Isao Kidoguchi, Hideto Adachi, Akihiko Ishibashi, Toshiya Fukuhisa, Yasuhito Kumabuchi