Patents by Inventor Masaki Maeda

Masaki Maeda has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220283674
    Abstract: An in-cell touch panel includes a plurality of source lines, a source redundant line, a touch sensor line formed in the same layer as the plurality of source lines or the source redundant line, an organic insulating layer formed in a layer above the touch sensor line, and a common electrode formed in a layer above the organic insulating layer. A contact hole in which part of the common electrode is arranged is formed in the organic insulating layer above the touch sensor line, and the common electrode is connected to the touch sensor line via the contact hole.
    Type: Application
    Filed: March 1, 2022
    Publication date: September 8, 2022
    Inventors: MASAKI MAEDA, TOHRU DAITOH, HAJIME IMAI, YOSHIHITO HARA, TERUYUKI UEDA, YOSHIHARU HIRATA, TATSUYA KAWASAKI
  • Publication number: 20220285405
    Abstract: An active matrix substrate includes a substrate and a plurality of oxide semiconductor TFTs supported on the substrate, in which each of oxide semiconductor TFT includes an oxide semiconductor layer including a first region and a second region having a specific resistance lower than a specific resistance of the first region, and a gate electrode disposed on at least a part of the first region with a gate insulating layer interposed therebetween, the gate insulating layer includes a first insulating layer and a second insulating layer disposed on the first insulating layer, and, when viewed from a normal direction of the substrate, the first insulating layer overlaps with the first region and does not overlap with the second region and the second insulating layer overlaps with the first region and at least a part of the second region.
    Type: Application
    Filed: March 4, 2022
    Publication date: September 8, 2022
    Inventors: Hajime IMAI, Tohru DAITOH, Teruyuki UEDA, Yoshihito HARA, Masaki MAEDA, Tatsuya KAWASAKI, Yoshiharu HIRATA
  • Patent number: 11215891
    Abstract: An active matrix substrate includes: a substrate; lower bus lines and upper bus lines; a lower insulating layer positioned between the lower bus lines and the upper bus lines; an oxide semiconductor TFT that are disposed in each pixel region and have an oxide semiconductor layer disposed on the lower insulating layer; pixel electrodes disposed in each pixel region; and wiring connection units arranged in a non-display region. Each wiring connection unit includes: a lower conductive layer formed using the same conductive film as the lower bus lines; an insulating layer that extends on the lower conductive layer and includes the lower insulating layer. The lower bus lines and the lower conductive layer have a first laminated structure including a metal layer and a transparent conductive layer that covers an upper surface and a side surface of the metal layer.
    Type: Grant
    Filed: May 21, 2020
    Date of Patent: January 4, 2022
    Assignee: SHARP KABUSHIKI KAISHA
    Inventors: Hideki Kitagawa, Yoshihito Hara, Masaki Maeda, Yoshiharu Hirata, Tatsuya Kawasaki, Teruyuki Ueda, Hajime Imai, Tohru Daitoh
  • Publication number: 20210384276
    Abstract: An active matrix substrate includes a first TFT and a second TFT, in which the first TFT includes a first oxide semiconductor layer and a first gate electrode arranged on a part of the first oxide semiconductor layer with a first gate insulating layer interposed therebetween, the first gate insulating layer has a layered structure including a first insulating film and a second insulating film arranged on the first insulating film, the second TFT includes a second oxide semiconductor layer having a higher mobility than the first oxide semiconductor layer and a second gate electrode arranged on a part of the second oxide semiconductor layer with a second gate insulating layer interposed therebetween, and the second gate insulating layer includes the second insulating film and does not include the first insulating film, and the second TFT further includes a lower insulating layer including the first insulating film arranged between the second oxide semiconductor layer and a substrate.
    Type: Application
    Filed: June 4, 2021
    Publication date: December 9, 2021
    Inventors: Hajime IMAI, Tohru DAITOH, Teruyuki UEDA, Yoshihito HARA, Masaki MAEDA, Tatsuya KAWASAKI, Yoshiharu HIRATA
  • Publication number: 20210349340
    Abstract: A display device includes a switching element having a pixel connection portion, a first insulating film having a first pixel contact hole formed therein so as to be in a place overlapping at least a part of the pixel connection portion, a common line, an intermediate electrode composed of the same conducting film as the common line, disposed to overlap the first pixel contact hole, and connected to the pixel connection portion, a common electrode not connected to the intermediate electrode but connected to the common line, a second insulating film having a second pixel contact hole formed therein so as to be in a place overlapping at least a part of the intermediate electrode, and a pixel electrode disposed so that at least a part of the pixel electrode overlaps the second pixel contact hole.
    Type: Application
    Filed: April 28, 2021
    Publication date: November 11, 2021
    Applicant: SHARP KABUSHIKI KAISHA
    Inventors: YOSHIHITO HARA, HAJIME IMAI, MASAKI MAEDA, TATSUYA KAWASAKI, YOSHIHARU HIRATA, TOHRU DAITOH
  • Patent number: 11150502
    Abstract: A display substrate includes a substrate, a first insulator, a metal film, a second insulator, an alignment film, a line, and film forming area defining recesses. The substrate includes a display area and a non-display area. The metal film is disposed upper than the first insulator. The second insulator is disposed upper than the metal film and has a thickness smaller than a thickness of the first insulator. The alignment film is disposed upper than the second insulator at least in the display area. The line extends to straddle the display area and the non-display area and includes a section of the metal film. The film forming area defining recesses are provided in the non-display area to extend to cross the line and include recesses sections of the second insulator to define a forming area of the alignment film.
    Type: Grant
    Filed: March 2, 2018
    Date of Patent: October 19, 2021
    Assignee: SHARP KABUSHIKI KAISHA
    Inventors: Masaki Maeda, Yoshihito Hara
  • Patent number: 11079636
    Abstract: An active matrix substrate includes TFTs, an interlayer insulating layer, a common electrode, a first dielectric layer, pixel electrodes, a second dielectric layer, and touch wirings, in which each of the pixel electrodes at least partially overlaps the common electrode via the first dielectric layer, so that an auxiliary capacitance including each of the pixel electrodes, the common electrode, and the first dielectric layer is formed, the touch sensor electrodes include a first electrode, the touch wirings include a first wiring and a second wiring in the touch sensor electrodes, the second wiring extends to the other electrode across the first electrode when viewed from a normal direction, and a portion of the second wiring overlaps the first electrode via the first and the second dielectric layers, so that a touch wiring capacitance including the second wiring, the first electrode, the first and the second dielectric layers is formed.
    Type: Grant
    Filed: October 21, 2020
    Date of Patent: August 3, 2021
    Assignee: SHARP KABUSHIKI KAISHA
    Inventors: Yoshiharu Hirata, Yoshihito Hara, Hideki Kitagawa, Tatsuya Kawasaki, Masaki Maeda, Teruyuki Ueda, Yoshimasa Chikama, Hajime Imai, Tohru Daitoh
  • Patent number: 11079643
    Abstract: An active matrix substrate includes: a source metal layer including a plurality of source bus lines; a lower insulating layer covering the source metal layer; a oxide semiconductor TFT including an oxide semiconductor layer provided on the lower insulating layer; an inter-layer insulating layer covering the oxide semiconductor TFT; a pixel electrode provided on the inter-layer insulating layer; a common electrode including a plurality of sub common electrodes each of which is capable of functioning as a touch sensor electrode; a gate metal layer including a plurality of gate bus lines and a gate electrode; a drain metal layer including the drain electrode; and a plurality of touch sensor lines included in the drain metal layer and each electrically connected to any one of the sub common electrodes.
    Type: Grant
    Filed: June 3, 2020
    Date of Patent: August 3, 2021
    Assignee: SHARP KABUSHIKI KAISHA
    Inventors: Masaki Maeda, Tohru Daitoh, Hajime Imai, Yoshihito Hara, Hideki Kitagawa, Tatsuya Kawasaki, Teruyuki Ueda, Yoshiharu Hirata
  • Patent number: 11079886
    Abstract: A display substrate includes a substrate, a first insulator, a metal film, a second insulator, an alignment film, a line, and film forming area defining recesses. The substrate includes a display area and a non-display area. The metal film is disposed in a layer upper than the first insulator. The second insulator is disposed upper than the metal film and has a thickness smaller than a thickness of the first insulator. The alignment film is disposed upper than the second insulator. The line extends to straddle the display area and the non-display area and includes a section of the metal film. The film forming area defining recesses in the non-display area to extend in a direction crossing an extending direction of the line but not to overlap the line include recessed sections of the first insulator to define a forming area of the alignment film.
    Type: Grant
    Filed: March 2, 2018
    Date of Patent: August 3, 2021
    Assignee: SHARP KABUSHIKI KAISHA
    Inventors: Masaki Maeda, Yoshihito Hara
  • Publication number: 20210183899
    Abstract: An active matrix substrate includes a plurality of source bus lines, a lower insulating layer covering the source bus lines, a plurality of gate bus lines formed above the lower insulating layer, and an oxide semiconductor TFT disposed to correspond to each pixel area. The oxide semiconductor TFT includes an oxide semiconductor layer disposed on the lower insulating layer, and a gate electrode disposed above the oxide semiconductor layer. The gate electrode is formed in a different layer from the gate bus lines, and is disposed to be separated from another gate electrode disposed in an adjacent pixel area. The gate electrode is covered by an interlayer insulating layer. The gate bus line is disposed on the interlayer insulating layer and in a gate contact hole formed in the interlayer insulating layer, and is connected to the gate electrode in the gate contact hole.
    Type: Application
    Filed: December 11, 2020
    Publication date: June 17, 2021
    Inventors: Hajime IMAI, Tohru DAITOH, Teruyuki UEDA, Yoshihito HARA, Masaki MAEDA, Tatsuya KAWASAKI, Yoshiharu HIRATA, Tetsuo KIKUCHI
  • Patent number: 11037962
    Abstract: The present invention provides a thin-film transistor array substrate that prevents semiconductor layers of thin-film transistor elements from having step disconnection even when the frame width is reduced. The thin-film transistor array substrate of the present invention includes a thin-film transistor element in a pixel region and a terminal in a terminal region. The thin-film transistor array substrate sequentially includes a support, an insulating layer, a gate electrode, a gate insulating layer, and a semiconductor layer in a cross-sectional view of the pixel region. A region with the insulating layer encompasses a region with the semiconductor layer in a plan view of the pixel region. The thin-film transistor array substrate sequentially includes the support, a lead line extending from the terminal, and the insulating layer in a cross-sectional view of the terminal region.
    Type: Grant
    Filed: June 28, 2018
    Date of Patent: June 15, 2021
    Assignee: SHARP KABUSHIKI KAISHA
    Inventors: Tatsuya Kawasaki, Hideki Kitagawa, Yoshihito Hara, Masaki Maeda, Toshikatsu Itoh, Hajime Imai, Tohru Daitoh
  • Publication number: 20210143184
    Abstract: The present invention provides a thin-film transistor array substrate that prevents semiconductor layers of thin-film transistor elements from having step disconnection even when the frame width is reduced. The thin-film transistor array substrate of the present invention includes a thin-film transistor element in a pixel region and a terminal in a terminal region. The thin-film transistor array substrate sequentially includes a support, an insulating layer, a gate electrode, a gate insulating layer, and a semiconductor layer in a cross-sectional view of the pixel region. A region with the insulating layer encompasses a region with the semiconductor layer in a plan view of the pixel region. The thin-film transistor array substrate sequentially includes the support, a lead line extending from the terminal, and the insulating layer in a cross-sectional view of the terminal region.
    Type: Application
    Filed: June 28, 2018
    Publication date: May 13, 2021
    Inventors: Tatsuya KAWASAKI, Hideki KITAGAWA, Yoshihito HARA, Masaki MAEDA, Toshikatsu ITOH, Hajime IMAI, Tohru DAITOH
  • Publication number: 20210141258
    Abstract: A display substrate includes a substrate, a first insulator, a metal film, a second insulator, an alignment film, a line, and film forming area defining recesses. The substrate includes a display area and a non-display area. The metal film is disposed upper than the first insulator. The second insulator is disposed upper than the metal film and has a thickness smaller than a thickness of the first insulator. The alignment film is disposed upper than the second insulator at least in the display area. The line extends to straddle the display area and the non-display area and includes a section of the metal film. The film forming area defining recesses are provided in the non-display area to extend to cross the line and include recesses sections of the second insulator to define a forming area of the alignment film.
    Type: Application
    Filed: March 2, 2018
    Publication date: May 13, 2021
    Inventors: MASAKI MAEDA, YOSHIHITO HARA
  • Publication number: 20210124220
    Abstract: An active matrix substrate includes TFTs, an interlayer insulating layer, a common electrode, a first dielectric layer, pixel electrodes, a second dielectric layer, and touch wirings, in which each of the pixel electrodes at least partially overlaps the common electrode via the first dielectric layer, so that an auxiliary capacitance including each of the pixel electrodes, the common electrode, and the first dielectric layer is formed, the touch sensor electrodes include a first electrode, the touch wirings include a first wiring and a second wiring in the touch sensor electrodes, the second wiring extends to the other electrode across the first electrode when viewed from a normal direction, and a portion of the second wiring overlaps the first electrode via the first and the second dielectric layers, so that a touch wiring capacitance including the second wiring, the first electrode, the first and the second dielectric layers is formed.
    Type: Application
    Filed: October 21, 2020
    Publication date: April 29, 2021
    Inventors: Yoshiharu HIRATA, Yoshihito HARA, Hideki KITAGAWA, Tatsuya KAWASAKI, Masaki MAEDA, Teruyuki UEDA, Yoshimasa CHIKAMA, Hajime IMAI, Tohru DAITOH
  • Publication number: 20210043656
    Abstract: An active matrix substrate includes gate bus lines; source bus lines; a lower insulating layer; an oxide semiconductor TFT; and a pixel electrode, in which the oxide semiconductor TFT includes an oxide semiconductor layer disposed on the lower insulating layer, a gate electrode, a source electrode, and a first ohmic conductive portion that is coupled to the oxide semiconductor layer and the source electrode, the lower insulating layer includes a source opening portion exposing at least a portion of the source electrode, the first ohmic conductive portion is disposed on the lower insulating layer and in the source opening portion and is in direct contact with at least the portion of the source electrode in the source opening portion, and the first region of the oxide semiconductor layer is in direct contact with an upper surface of the first ohmic conductive portion.
    Type: Application
    Filed: August 4, 2020
    Publication date: February 11, 2021
    Inventors: Yoshihito Hara, Tohru Daitoh, Hajime Imai, Masaki Maeda, Tatsuya Kawasaki, Hideki Kitagawa, Yoshiharu Hirata
  • Publication number: 20210012852
    Abstract: A semiconductor memory device includes a data bus terminal group for outputting read data to an external device or inputting write data from an external device, a first terminal from or into which 1-bit data is output or input, a DBI circuit that executes a Data Bus Inversion (DBI) function, an error detection circuit that detects an internal error, and an information superimposing circuit that superimposes predetermined output information onto the 1-bit data to be output from the first terminal and the read data to be output from the data bus terminal group. The predetermined output information includes first output information indicating whether or not an output bit pattern of the data bus terminal group is inverted, and second output information indicating whether or not an internal error has been detected by the error detection circuit.
    Type: Application
    Filed: July 6, 2020
    Publication date: January 14, 2021
    Applicant: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Kazuhito TANAKA, Masaki MAEDA
  • Publication number: 20200387019
    Abstract: An active matrix substrate includes: a source metal layer including a plurality of source bus lines; a lower insulating layer covering the source metal layer; a oxide semiconductor TFT including an oxide semiconductor layer provided on the lower insulating layer; an inter-layer insulating layer covering the oxide semiconductor TFT; a pixel electrode provided on the inter-layer insulating layer; a common electrode including a plurality of sub common electrodes each of which is capable of functioning as a touch sensor electrode; a gate metal layer including a plurality of gate bus lines and a gate electrode; a drain metal layer including the drain electrode; and a plurality of touch sensor lines included in the drain metal layer and each electrically connected to any one of the sub common electrodes.
    Type: Application
    Filed: June 3, 2020
    Publication date: December 10, 2020
    Inventors: Masaki MAEDA, Tohru DAITOH, Hajime IMAI, Yoshihito HARA, Hideki KITAGAWA, Tatsuya KAWASAKI, Teruyuki UEDA, Yoshiharu HIRATA
  • Publication number: 20200381463
    Abstract: The present invention has an object to reduce the number of necessary masks to reduce manufacturing cost. A method of manufacturing a display device includes: forming electrodes or first lines; forming a first insulating film covering the electrodes or the first lines; forming a second insulating film covering the first insulating film; collectively forming first contact holes through the first insulating film and the second insulating film so as to expose parts of the electrodes or parts of the first lines; planarizing a surface of the second insulating film; and forming a first conductive layer to be connected from the surface of the second insulating film to the exposed parts of the electrodes or the exposed parts of the first lines via the first contact holes.
    Type: Application
    Filed: May 21, 2020
    Publication date: December 3, 2020
    Inventors: TATSUYA KAWASAKI, TOHRU DAITOH, HAJIME IMAI, HIDEKI KITAGAWA, YOSHIHITO HARA, MASAKI MAEDA, YOSHIHARU HIRATA, TERUYUKI UEDA
  • Publication number: 20200371401
    Abstract: An active matrix substrate includes: a substrate; lower bus lines and upper bus lines; a lower insulating layer positioned between the lower bus lines and the upper bus lines; an oxide semiconductor TFT that are disposed in each pixel region and have an oxide semiconductor layer disposed on the lower insulating layer; pixel electrodes disposed in each pixel region; and wiring connection units arranged in a non-display region. Each wiring connection unit includes: a lower conductive layer formed using the same conductive film as the lower bus lines; an insulating layer that extends on the lower conductive layer and includes the lower insulating layer. The lower bus lines and the lower conductive layer have a first laminated structure including a metal layer and a transparent conductive layer that covers an upper surface and a side surface of the metal layer.
    Type: Application
    Filed: May 21, 2020
    Publication date: November 26, 2020
    Inventors: HIDEKI KITAGAWA, YOSHIHITO HARA, MASAKI MAEDA, YOSHIHARU HIRATA, TATSUYA KAWASAKI, TERUYUKI UEDA, HAJIME IMAI, TOHRU DAITOH
  • Patent number: 10795225
    Abstract: Provided is a display device in which connection defects in terminal parts can be suppressed, and a method for producing the same. An active matrix substrate 1 of a display device includes gate lines, data lines arranged so as to intersect with the gate lines, pixel electrodes, counter electrodes forming capacitors between the same and the pixel electrodes, and signal lines that are connected with the counter electrodes and supply a driving signal for touch detection. Further, the active matrix substrate 1 includes a display driving circuit that supplies a control signal to at least either the gate lines or the data lines, and a touch detection driving circuit that supplies a driving signal for touch detection. Still further, the active matrix substrate 1 includes a plurality of terminal parts Ta to which the display driving circuit and the touch detection driving circuit are connected, and the terminal parts Ta have a common layer structure.
    Type: Grant
    Filed: June 7, 2017
    Date of Patent: October 6, 2020
    Assignee: SHARP KABUSHIKI KAISHA
    Inventors: Yoshihito Hara, Masaki Maeda, Masakatsu Tominaga, Isao Ogasawara, Kuniko Maeno, Shingo Kamitani, Yasuhiro Mimura, Satoshi Horiuchi, Yoshihiro Asai