Patents by Inventor Masami Yakabe

Masami Yakabe has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7368920
    Abstract: An electric potential fixing apparatus of the present invention is an electric potential fixing apparatus that is connected to a connection line (17) between two capacitances, the first capacitance (14) and the second capacitance (15) that is directly connected to the first capacitance, includes the first high resistance (3), the second high resistance (4) that is connected directly to the first high resistance, a voltage dividing unit that outputs electric potential divided by the first high resistance and the second high resistance to the output terminal, the third capacitance (8) that is connected in parallel to at least either of the first high resistance and the second high resistance, and a voltage supply unit (1) operable to maintain constantly electric potential of the connection line between the two capacitances (14) and (15), holding combined total electric charge quantity of the first capacitance and the second capacitance, and the output terminal of the voltage supply unit is connected to a signal
    Type: Grant
    Filed: September 6, 2002
    Date of Patent: May 6, 2008
    Assignee: Tokyo Electron Limited
    Inventor: Masami Yakabe
  • Patent number: 7348788
    Abstract: A probing card and an inspection apparatus which precisely inspect a microstructure having a minute moving section by a simple method are provided. A probing card (6) has a speaker (2), and a circuit substrate (100) which fixes a probe (4), and the speaker (2) is disposed on the circuit substrate (100). The circuit substrate (100) is provided with an aperture region. As the speaker (2) is disposed on that region, a test sound wave is output to the moving section of the microstructure. The probe (4) detects a change in an electrical characteristic caused by the motion of the moving section according to the test sound wave, thereby inspecting the characteristic of the microstructure.
    Type: Grant
    Filed: March 31, 2006
    Date of Patent: March 25, 2008
    Assignee: Tokyo Electron Limited
    Inventors: Masami Yakabe, Naoki Ikeuchi
  • Publication number: 20080067073
    Abstract: In a manufacturing method for an interposer, a seed layer is formed at an opening portion in a through hole on back surface side of a substrate, an electrode layer for electroplated coating is formed based on the seed layer, and an electroplated coating layer is formed to fill the through hole from the electrode layer for electroplated coating layer to a front surface side. As a result, a manufacturing method for an interposer is provided in which the manufacturing process is simple and the void is not generated inside of the through hole.
    Type: Application
    Filed: July 5, 2005
    Publication date: March 20, 2008
    Inventors: Kenichi Kagawa, Tomohisa Hoshino, Masami Yakabe
  • Publication number: 20070278650
    Abstract: In a semiconductor device a substrate is formed in a rectangular shape having four edges along dicing lines, and a jetty portion is formed so as to surround an actuator element and an electrode pad for signal input and output. The jetty portion is a rectangular shape having four sides and each side continuously extends along each edge of the substrate in parallel. A foreign object generated when dicing process is performed, is prevented from attaching onto the actuator element and the electrode pad because close adhesion of a protecting tape is improved by the jetty portion.
    Type: Application
    Filed: February 28, 2005
    Publication date: December 6, 2007
    Inventors: Kenichi Kagawa, Masami Yakabe
  • Publication number: 20070257692
    Abstract: A probe, wherein a beam 3 is cantilevered by a supporter 2 with a predetermined space from a probe substrate 1, and a contact 4 extending in a direction away from the probe substrate 1 is attached to the beam 3. A projection 5 extending toward the probe substrate 1 is formed on the beam 3. Since the projection 5 is brought into contact with the probe substrate 1 when a load is applied to the probe substrate 1, stress imposed on the beam 3 can be dispersed.
    Type: Application
    Filed: October 31, 2005
    Publication date: November 8, 2007
    Inventors: Masami Yakabe, Tomohisa Hoshino, Naoki Ikeuchi
  • Publication number: 20070246253
    Abstract: A through substrate which comprises a silicon substrate (10) having a through hole (19) penetrating a front surface (11) and a back surface (12), a oxidized silicon film (13) being provided along the inner wall surface of the through hole (19), layers (14, 15) comprising Zn and Cu, respectively, being formed on the inner wall surface of the oxidized silicon film (13), and a Cu plating layer (18) which has been grown from a Cu seed layer (17) along the inner wall surface of layers (14, 15) comprising Zn and Cu, respectively, via an insulating layer (16) between them. The above through substrate can provide a through electrode capable of avoiding the noise due to the cross talk.
    Type: Application
    Filed: July 5, 2005
    Publication date: October 25, 2007
    Inventors: Masami Yakabe, Kenichi Kagawa, Tomohisa Hoshino
  • Publication number: 20070193358
    Abstract: A capacity detection type sensor element includes a rectangular vibrating plate, a flat back electrode which are provided opposedly with each other, and fixing portions which are provided adjoining to the vibrating plate, and has a predetermined length A of edge at a side adjoining to the vibrating plate. The back electrode is held by the fixing portions in a state that space is provided between the back electrode and the vibrating plate. Outer edges of the back electrode which are not held by the adjoining fixing portions, are straight lines and the straight lines define an octagonal shape as a whole.
    Type: Application
    Filed: February 14, 2005
    Publication date: August 23, 2007
    Inventors: Kenichi Kagawa, Masami Yakabe, Shinichi Saeki, Takahisa Ohtsuji
  • Publication number: 20070069746
    Abstract: A probing card and an inspection apparatus which precisely inspect a microstructure having a minute moving section by a simple method are provided. A probing card (6) has a speaker (2), and a circuit substrate (100) which fixes a probe (4), and the speaker (2) is disposed on the circuit substrate (100). The circuit substrate (100) is provided with an aperture region. As the speaker (2) is disposed on that region, a test sound wave is output to the moving section of the microstructure. The probe (4) detects a change in an electrical characteristic caused by the motion of the moving section according to the test sound wave, thereby inspecting the characteristic of the microstructure.
    Type: Application
    Filed: March 31, 2006
    Publication date: March 29, 2007
    Inventors: Masami Yakabe, Naoki Ikeuchi
  • Patent number: 7088112
    Abstract: A capacitor C and an impedance converter Hiz are included in a feedback circuit of the first operational amplifier OP1 in series; an electrode P1 of a capacitive sensor is connected to a connection point of the said capacitor and the converter via a signal line L. The signal line L is connected to a predetermined standard electric potential through resistance R3 whose resistance value is high. When the capacitor is included in the feedback circuit, the signal line becomes in a state of floating and a circuit operation becomes unstable, however, the signal line L is fixed at predetermined electric potential, and therefore, the operation becomes stable. It is acceptable to configure the impedance converter with a voltage follower and connect the resistance R3 to the output.
    Type: Grant
    Filed: September 6, 2002
    Date of Patent: August 8, 2006
    Assignee: Tokyo Electron Limited
    Inventor: Masami Yakabe
  • Patent number: 7046016
    Abstract: An electric potential fixing apparatus is provided that can prevent the combined total amount of electricity of a connection line between the first capacitance and the second capacitance from changing even when the electric potential of the connection line between the first capacitance and the second capacitance is fixed in the case where the first capacitance and the second capacitance are directly connected. This electric potential fixing apparatus has the first high resistance (3) and the second high resistance (4) and includes a voltage supply circuit (1) that preserves the combined total amount of electric charge of a measuring capacitance (14) and a fixed capacitance (15) and maintains constant the electric potential of a signal line (17) that connects the measuring capacitance (14) and the fixed capacitance (15). And an output terminal (5) of the voltage supply circuit (1) is connected to the signal line (17).
    Type: Grant
    Filed: October 22, 2002
    Date of Patent: May 16, 2006
    Assignees: Tokyo Electron Limited, Hokuto Electronics, Inc.
    Inventors: Masami Yakabe, Koichi Nakano
  • Patent number: 7034551
    Abstract: An electrostatic capacitance detection circuit 10 comprises an AC voltage generator 11, a first operational amplifier 14 of which non-inverting input terminal is connected to specific potential (a ground in this example), a second operational amplifier 16 that includes a voltage follower, a resistance (R1) 12 connected between the AC voltage generator 11 and an inverting input terminal of the first operational amplifier 14, a resistance (R2) 13 connected between the inverting input terminal of the first operational amplifier 14 and an output terminal of the second operational amplifier 16, and an impedance element (a capacitor) 15 connected between an output terminal of the first operational amplifier 14 and a non-inverting input terminal of the second operational amplifier 16, and a capacitor to be detected 17 is connected between the non-inverting input terminal of the second operational amplifier 16 and specific potential.
    Type: Grant
    Filed: September 6, 2002
    Date of Patent: April 25, 2006
    Assignee: Tokyo Electron Limited
    Inventors: Masami Yakabe, Naoki Ikeuchi
  • Patent number: 7023223
    Abstract: An electrostatic capacitance detection circuit 10 comprises an AC voltage generator 11, an operational amplifier 14 of which non-inverting input terminal is connected to specific potential (a ground in this example), an impedance converter 16, a resistance (R1) 12 connected between the AC voltage generator 11 and an inverting input terminal of the operational amplifier 14, a resistance (R2) 13 connected between the inverting input terminal of the operational amplifier 14 and an output terminal of the impedance converter 16, and an impedance element (a capacitor) 15 connected between an output terminal of the operational amplifier 14 and an input terminal of the impedance converter 16. A capacitor to be detected 17 is connected between the input terminal of the impedance converter 16 and the specific potential.
    Type: Grant
    Filed: September 6, 2002
    Date of Patent: April 4, 2006
    Assignee: Tokyo Electron Limited
    Inventors: Masami Yakabe, Naoki Ikeuchi, Toshiyuki Matsumoto, Koichi Nakano
  • Patent number: 7019540
    Abstract: An electrostatic capacitance detection circuit 10 comprises an AC voltage generator 11, an operational amplifier 14 of which non-inverting input terminal is connected to specific potential (a ground in this example), an impedance converter 16, a resistance (R1) 12 connected between the AC voltage generator 11 and an inverting input terminal of the operational amplifier 14, a resistance (R2) 13 connected between the inverting input terminal of the operational amplifier 14 and an output terminal of the impedance converter 16, and an impedance element (a capacitor) 15 connected between an output terminal of the operational amplifier 14 and an input terminal of the impedance converter 16, and a capacitor to be detected 17 is connected between the input terminal of the impedance converter 16 and specific potential. The electrostatic capacitance detection circuit 10 and the capacitor 17 are located adjacently.
    Type: Grant
    Filed: September 6, 2002
    Date of Patent: March 28, 2006
    Assignee: Tokyo Electron Limited
    Inventors: Masami Yakabe, Naoki Ikeuchi
  • Patent number: 7005865
    Abstract: An electrostatic capacitance detection circuit 10 comprises a DC voltage generator 11, an operational amplifier 14 of which non-inverting input terminal is connected to specific potential, an impedance converter 16, a resistance (R1) 12 connected between the DC voltage generator 11 and an inverting input terminal of the operational amplifier 14, a resistance (R2) 13 connected between the inverting input terminal of the operational amplifier 14 and an output terminal of the impedance converter 16, and a capacitor 15 connected between an output terminal of the operational amplifier 14 and an input terminal of the impedance converter 16. A capacitor to be detected 17 is connected between the input terminal of the impedance converter 16 and specific potential.
    Type: Grant
    Filed: September 6, 2002
    Date of Patent: February 28, 2006
    Assignee: Tokyo Electron Limited
    Inventors: Masami Yakabe, Naoki Ikeuchi
  • Publication number: 20050279170
    Abstract: Test sound wave is outputted from a speaker. A movable part of a three-axis acceleration sensor, which is a micro structure of a chip to be tested TP, moves due to the arrival of the test sound wave which is compression wave outputted from the speaker, that is, due to air vibrations. A change in the resistance value that changes in accordance with this movement is measured on the basis of an output voltage that is provided via a probe needles. A control part determines the property of the three-axis acceleration sensor on the basis of the measured property values, that is, measured data.
    Type: Application
    Filed: June 10, 2005
    Publication date: December 22, 2005
    Inventors: Katsuya Okumura, Toshiyuki Matsumoto, Naoki Ikeuchi, Masami Yakabe
  • Publication number: 20050116700
    Abstract: An electric potential fixing apparatus is provided that can prevent the combined total amount of electricity of a connection line between the first capacitance and the second capacitance from changing even when the electric potential of the connection line between the first capacitance and the second capacitance is fixed in the case where the first capacitance and the second capacitance are directly connected. This electric potential fixing apparatus has the first high resistance (3) and the second high resistance (4) and includes a voltage supply circuit (1) that preserves the combined total amount of electric charge of a measuring capacitance (14) and a fixed capacitance (15) and maintains constant the electric potential of a signal line (17) that connects the measuring capacitance (14) and the fixed capacitance (15). And an output terminal (5) of the voltage supply circuit (1) is connected to the signal line (17).
    Type: Application
    Filed: October 22, 2002
    Publication date: June 2, 2005
    Inventors: Masami Yakabe, Koichi Nakano
  • Patent number: 6900751
    Abstract: An analog multiplier 11 raises a base reference voltage “Vref0” to the nth power so that a reference voltage “Vref1” is produced. Analog multipliers 12 and 13 sequentially raise the reference voltage “Vref1” to the nth power so that reference voltages “Vref2” and “Vref3” are produced. Switch groups 38-41 control the reference voltages “Vref0” to “Vref3”, which are then sent to an analog multiplier 14 together with an input voltage “Vin”. A comparator 14 sequentially compares a multiplication result “Vx” of the multiplier 14 with a voltage “Vout” outputted from a sensor circuit 2, so that a digital output value “Dout” is produced. The analog multiplier 14 is set as appropriate.
    Type: Grant
    Filed: July 2, 2003
    Date of Patent: May 31, 2005
    Assignee: Tokyo Electron Limited
    Inventor: Masami Yakabe
  • Publication number: 20050040833
    Abstract: An electrostatic capacitance detection circuit 10 comprises an AC voltage generator 11, a first operational amplifier 14 of which non-inverting input terminal is connected to specific potential (a ground in this example), a second operational amplifier 16 that includes a voltage follower, a resistance (R1) 12 connected between the AC voltage generator 11 and an inverting input terminal of the first operational amplifier 14, a resistance (R2) 13 connected between the inverting input terminal of the first operational amplifier 14 and an output terminal of the second operational amplifier 16, and an impedance element (a capacitor) 15 connected between an output terminal of the first operational amplifier 14 and a non-inverting input terminal of the second operational amplifier 16, and a capacitor to be detected 17 is connected between the non-inverting input terminal of the second operational amplifier 16 and specific potential.
    Type: Application
    Filed: September 6, 2002
    Publication date: February 24, 2005
    Inventors: Masami Yakabe, Naoki Ikeuchi
  • Publication number: 20050035771
    Abstract: An electrostatic capacitance detection circuit 10 comprises a DC voltage generator 11, an operational amplifier 14 of which non-inverting input terminal is connected to specific potential, an impedance converter 16, a resistance (R1) 12 connected between the DC voltage generator 11 and an inverting input terminal of the operational amplifier 14, a resistance (R2) 13 connected between the inverting input terminal of the operational amplifier 14 and an output terminal of the impedance converter 16, and a capacitor 15 connected between an output terminal of the operational amplifier 14 and an input terminal of the impedance converter 16. A capacitor to be detected 17 is connected between the input terminal of the impedance converter 16 and specific potential.
    Type: Application
    Filed: September 6, 2002
    Publication date: February 17, 2005
    Inventors: Masami Yakabe, Naoki Ikeuchi
  • Publication number: 20050036271
    Abstract: A capacitor C and an impedance converter Hiz are included in a feedback circuit of the first operational amplifier OP1 in series; an electrode P1 of a capacitive sensor is connected to a connection point of the said capacitor and the converter via a signal line L. The signal line L is connected to a predetermined standard electric potential through resistance R3 whose resistance value is high. When the capacitor is included in the feedback circuit, the signal line becomes in a state of floating and a circuit operation becomes unstable, however, the signal line L is fixed at predetermined electric potential, and therefore, the operation becomes stable. It is acceptable to configure the impedance converter with a voltage follower and connect the resistance R3 to the output.
    Type: Application
    Filed: September 6, 2002
    Publication date: February 17, 2005
    Inventor: Masami Yakabe