Patents by Inventor Masanobu Honda

Masanobu Honda has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150243524
    Abstract: A method of processing a target object includes (a) exposing a resist mask to active species of hydrogen generated by exciting plasma of a hydrogen-containing gas within a processing vessel while the target object is mounted on a mounting table provided in the processing vessel; and (b) etching a hard mask layer by exciting plasma of an etchant gas within the processing vessel after the exposing of the resist mask to the active species of hydrogen. The plasma is excited by applying of a high frequency power for plasma excitation to an upper electrode. In the method, a distance between the upper electrode and the mounting table in the etching of the hard mask layer ((b) process) is set to be larger than a distance between the upper electrode and the mounting table in the exposing of the resist mask to the active species of hydrogen ((a) process).
    Type: Application
    Filed: September 11, 2013
    Publication date: August 27, 2015
    Inventors: Yoshihide Kihara, Hiromi Mochizuki, Masanobu Honda, Masaya Kawamata, Ken Kobayashi, Ryoichi Yoshida
  • Publication number: 20150243522
    Abstract: An etching method can etch a region formed of silicon oxide. The etching method includes an exposing process (process (a)) of exposing a target object including the region formed of the silicon oxide to plasma of a processing gas containing a fluorocarbon gas, etching the region, and forming a deposit containing fluorocarbon on the region; and an etching process (process (b)) of etching the region with a radical of the fluorocarbon contained in the deposit. Further, in the method, the process (a) and the process (b) are alternately repeated.
    Type: Application
    Filed: February 19, 2015
    Publication date: August 27, 2015
    Inventors: Keiji Kitagaito, Takayuki Katsunuma, Masanobu Honda
  • Publication number: 20150235860
    Abstract: An etching method of selectively etching a first region formed of silicon oxide with respect to a second region formed of silicon nitride includes: a process (a) and a process (b). In the process (a), a target object is exposed to plasma of a fluorocarbon gas and a thickness of a protective film on the second region is larger than a thickness of a protective film formed on the first region. In the process (b), the first region is etched by plasma of a fluorocarbon gas. In the process (a), a temperature of the target object is set to 60° C. or more to 250° C. or less.
    Type: Application
    Filed: February 16, 2015
    Publication date: August 20, 2015
    Inventors: Maju Tomura, Hikaru Watanabe, Takahiko Kato, Masanobu Honda
  • Patent number: 9087676
    Abstract: A plasma processing method includes forming a silicon oxide film on a surface of a member provided within a chamber with plasma of a silicon-containing gas without oxygen while controlling a temperature of the member to be lower than a temperature of another member; performing a plasma process on a target object loaded into the chamber with plasma of a processing gas after the silicon oxide film is formed on the surface of the member; and removing the silicon oxide film from the surface of the member with plasma of a fluorine-containing gas after the target object on which the plasma process is performed is unloaded to an outside of the chamber.
    Type: Grant
    Filed: January 14, 2014
    Date of Patent: July 21, 2015
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Takayuki Katsunuma, Masanobu Honda, Hironobu Ichikawa
  • Publication number: 20150187588
    Abstract: A plasma etching method for etching a substrate includes an adjustment step adjusting a concentration distribution of active species contained in plasma. The adjustment step adjusts a supply rate of an etching gas according to whether a supply region on a substrate to which the etching gas is supplied corresponds to a region where an effect of diffusion of the supplied etching gas is greater than an effect of flow of the supplied etching gas or a region where the effect of flow of the supplied etching gas is greater than the effect of diffusion of the supplied etching gas.
    Type: Application
    Filed: February 6, 2015
    Publication date: July 2, 2015
    Inventors: Kazuhiro KUBOTA, Masanobu HONDA, Takayuki KATSUNUMA
  • Publication number: 20150170932
    Abstract: Provided is an etching method for forming a space with an aspect ratio of 50 or more in a workpiece including a silicon oxide film and a hard mask. The etching method includes: a first step of exposing the workpiece to plasma of a fluorocarbon-based gas within a processing container of a capacitively coupled plasma processing apparatus which includes a placing table serving as a lower electrode and an upper electrode; and a second step of further exposing the workpiece to the plasma of a fluorocarbon-based gas within a processing container of a capacitively coupled plasma processing apparatus which includes a placing table serving as a lower electrode and an upper electrode. A distance between the placing table and the upper electrode in the first step is at least 5/3 times of a distance between the placing table and the upper electrode in the first step.
    Type: Application
    Filed: November 17, 2014
    Publication date: June 18, 2015
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Maju TOMURA, Hikaru WATANABE, Fumiya KOBAYASHI, Kazuhiro KUBOTA, Masanobu HONDA
  • Patent number: 9048178
    Abstract: A plasma etching method is provided for etching a substrate corresponding to an etching object within an etching apparatus that includes a supply condition adjustment unit for adjusting a supply condition for supplying etching gas to the substrate, a temperature adjustment unit for adjusting a temperature of the substrate placed on a stage along a radial direction, and a plasma generating unit for generating plasma within a space between the supply condition adjustment unit and the stage. The plasma etching method includes a control step in which the temperature adjustment unit controls the temperature of the substrate to be uniform within a substrate plane of the substrate, and an adjustment step in which the supply condition adjustment unit adjusts a concentration distribution of active species contained in the plasma generated by the plasma generation unit within the space above the substrate.
    Type: Grant
    Filed: September 25, 2012
    Date of Patent: June 2, 2015
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Kazuhiro Kubota, Masanobu Honda, Takayuki Katsunuma
  • Patent number: 8999068
    Abstract: Provided is a chamber cleaning method capable of efficiently removing a CF-based shoulder deposit containing Si and Al deposited on an outer periphery of an ESC. A mixed gas of an O2 gas and a F containing gas is supplied toward an outer periphery 24a of an ESC 24 at a pressure ranging from about 400 mTorr to about 800 mTorr; plasma generated from the mixed gas is irradiated onto the outer periphery 24a of the ESC 24; an O2 single gas as a mask gas is supplied to the top surface of ESC 24 except the outer periphery 24a; and the shoulder deposit 50 adhered to the outer periphery 24a is decomposed and removed while preventing the top surface of ESC 24 except the outer periphery 24a from being exposed to a F radical.
    Type: Grant
    Filed: September 1, 2010
    Date of Patent: April 7, 2015
    Assignee: Tokyo Electron Limited
    Inventors: Masanobu Honda, Hidetoshi Hanaoka, Taichi Hirano, Takanori Mimura, Manabu Iwata, Taketoshi Okajo
  • Publication number: 20140363980
    Abstract: A semiconductor device manufacturing method is provided that includes etching with a plasma a multilayer film including a first film and a second film with differing dielectric constants alternately stacked on a substrate using a photoresist layer arranged on the multilayer film as a mask, and forming the multilayer film into a stepped configuration. The semiconductor device manufacturing method includes repetitively performing a first step of etching the first film using the photoresist layer as the mask; a second step of adjusting a pressure within a processing chamber to 6-30 Torr, generating the plasma by applying a first high frequency power for biasing and a second high frequency power for plasma generation to the lower electrode, and etching the photoresist layer using the generated plasma; and a third step of etching the second film using the photoresist layer and the first film as the mask.
    Type: Application
    Filed: February 5, 2013
    Publication date: December 11, 2014
    Inventors: Masaya Kawamata, Masanobu Honda
  • Patent number: 8840753
    Abstract: The present invention is a plasma etching method including: an arranging step of arranging a pair of electrodes oppositely in a chamber and making one of the electrodes support a substrate to be processed in such a manner that the substrate is arranged between the electrodes, the substrate having an organic-material film and an inorganic-material film; and an etching step of applying a high-frequency electric power to at least one of the electrodes to form a high-frequency electric field between the pair of the electrodes, supplying a process gas into the chamber to form a plasma of the process gas by means of the electric field, and selectively plasma-etching the organic-material film of the substrate with respect to the inorganic-material film by means of the plasma; wherein a frequency of the high-frequency electric power applied to the at least one of the electrodes is 50 to 150 MHz in the etching step.
    Type: Grant
    Filed: October 13, 2009
    Date of Patent: September 23, 2014
    Assignees: Tokyo Electron Limited, Kabushiki Kaisha Toshiba
    Inventors: Masanobu Honda, Kazuya Nagaseki, Koichiro Inazawa, Shoichiro Matsuyama, Hisataka Hayashi
  • Publication number: 20140273486
    Abstract: A method of manufacturing a semiconductor device including a wafer using a plasma etching device which includes a chamber, a chuck provided in the chamber to dispose a wafer to be processed thereon, a focus ring disposed at a peripheral edge portion of the chuck, and a gas supplying mechanism configured to supply various types of gases depending a radial position of the wafer. The method includes: placing a wafer formed with an organic film on the chuck; introducing an etching gas which etches the organic film on the wafer from the process gas supplying mechanism to a central portion of the wafer; introducing an etching inhibiting factor gas having a property of reacting with the etching gas to the peripheral edge portion of the wafer from the gas supplying mechanism; and performing plasma etching on the wafer using the etching gas.
    Type: Application
    Filed: October 25, 2012
    Publication date: September 18, 2014
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Takayuki Katsunuma, Masanobu Honda, Kazuhiro Kubota, Hironobu Ichikawa
  • Publication number: 20140256147
    Abstract: Advantages of a conventional upper electrode DC power applying manner can be maintained and disadvantages of the upper electrode DC power applying manner can be removed. In a capacitively coupled plasma processing apparatus, a first high frequency power RFH for plasma generation and a second high frequency power RFL for ion attraction are overlapped with each other to be applied to a susceptor (lower electrode) 16. Further, an AC power having a preset frequency is applied to an upper electrode 46 via a matching unit 66 and a blocking capacitor 68 from an AC power supply 64. Furthermore, the AC power has a frequency, which ions in plasma can follow, and the AC power supply 64 can vary a power, a voltage peak value, or an effective value the AC power.
    Type: Application
    Filed: September 25, 2012
    Publication date: September 11, 2014
    Applicant: Tokyo Electron Limited
    Inventors: Hikaru Watanabe, Masanobu Honda
  • Publication number: 20140234992
    Abstract: A plasma etching method is provided for etching a substrate corresponding to an etching object within an etching apparatus that includes a supply condition adjustment unit for adjusting a supply condition for supplying etching gas to the substrate, a temperature adjustment unit for adjusting a temperature of the substrate placed on a stage along a radial direction, and a plasma generating unit for generating plasma within a space between the supply condition adjustment unit and the stage. The plasma etching method includes a control step in which the temperature adjustment unit controls the temperature of the substrate to be uniform within a substrate plane of the substrate, and an adjustment step in which the supply condition adjustment unit adjusts a concentration distribution of active species contained in the plasma generated by the plasma generation unit within the space above the substrate.
    Type: Application
    Filed: September 25, 2012
    Publication date: August 21, 2014
    Applicant: Tokyo Electron Limited
    Inventors: Kazuhiro Kubota, Masanobu Honda, Takayuki Katsunuma
  • Patent number: 8790489
    Abstract: The substrate processing apparatus includes a process chamber which accommodates a wafer and performs a plasma etching process on the wafer, an exhaust chamber which communicates with the process chamber, an exhaust plate which divides the process chamber from the exhaust chamber and prevents plasma inside the process chamber from leaking into the exhaust chamber, and an upper electrode plate arranged inside the exhaust chamber, wherein the exhaust plate includes a plurality of through holes, and the upper electrode plate includes a plurality of through holes, is capable of contacting the exhaust plate in parallel, and is capable of being spaced apart from the exhaust plate.
    Type: Grant
    Filed: July 1, 2011
    Date of Patent: July 29, 2014
    Assignee: Tokyo Electron Limited
    Inventors: Masanobu Honda, Kazuhiro Kubota, Yoshinobu Ooya, Masaru Nishino
  • Publication number: 20140197135
    Abstract: A plasma processing method includes forming a silicon oxide film on a surface of a member provided within a chamber with plasma of a silicon-containing gas without oxygen while controlling a temperature of the member to be lower than a temperature of another member; performing a plasma process on a target object loaded into the chamber with plasma of a processing gas after the silicon oxide film is formed on the surface of the member; and removing the silicon oxide film from the surface of the member with plasma of a fluorine-containing gas after the target object on which the plasma process is performed is unloaded to an outside of the chamber.
    Type: Application
    Filed: January 14, 2014
    Publication date: July 17, 2014
    Inventors: Takayuki Katsunuma, Masanobu Honda, Hironobu Ichikawa
  • Publication number: 20140193977
    Abstract: A plasma etching apparatus includes a processing chamber; a holding unit for holding the substrate within the processing chamber; an electrode plate facing the holding unit; a plurality of supply parts arranged at different radial positions with respect to the substrate for supplying processing gas to a space between the holding unit and the electrode plate; a high frequency power supply that supplies high frequency power to the holding unit and/or the electrode plate to convert the processing gas supplied to the space into plasma; an adjustment unit that adjusts a supply condition for each of the supply parts; and a control unit that controls the adjustment unit to vary the supply condition between a position where an effect of diffusion of processing gas on an active species concentration distribution at the substrate is dominant and a position where an effect of flow of the processing gas is dominant.
    Type: Application
    Filed: August 28, 2012
    Publication date: July 10, 2014
    Applicant: Tokyo Electron Limited
    Inventors: Masaya Kawamata, Masanobu Honda, Kazuhiro Kubota
  • Publication number: 20140134848
    Abstract: Disclosed is a plasma etching method which suppresses the narrowing of the line-width of the line formed by etching and maintain the height of a remaining photoresist. The plasma etching method includes a modification process and an etching process. The modification process modifies a photoresist having a predetermined pattern by plasma of HBr/Ar gas while applying a negative DC voltage to an upper electrode containing silicon disposed to face a target object in which an organic film and the photoresist are sequentially laminated. The etching process etches the organic film by plasma of a processing gas which contains a CF-based gas and a CHF-based gas.
    Type: Application
    Filed: November 7, 2013
    Publication date: May 15, 2014
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Toru HISAMATSU, Masanobu HONDA, Yoshihide KIHARA
  • Patent number: 8671882
    Abstract: A plasma processing apparatus capable of, over a prolonged period of time, controlling a decrease in the value of a DC current flowing within an accommodating compartment. The plasma processing apparatus comprises an accommodating compartment adapted to accommodate a substrate and perform a plasma treatment thereon, a high-frequency power source adapted to supply high-frequency power to the inside of the accommodating compartment; a DC electrode adapted to apply a DC voltage to the inside of the accommodating compartment, a ground electrode provided within the accommodating compartment and used for the applied DC voltage, and an exhaust unit adapted to evacuate the inside of the accommodating compartment.
    Type: Grant
    Filed: March 24, 2008
    Date of Patent: March 18, 2014
    Assignee: Tokyo Electron Limited
    Inventor: Masanobu Honda
  • Patent number: 8647442
    Abstract: A cleaning substrate that can prevent a decrease in the operating rate of a substrate processing apparatus. The cleaning substrate that cleans the interior of a chamber in the substrate processing apparatus has a removal mechanism that removes foreign matter in the chamber.
    Type: Grant
    Filed: April 24, 2012
    Date of Patent: February 11, 2014
    Assignee: Tokyo Electron Limited
    Inventors: Yohei Yamazawa, Hiroshi Nagaike, Masashi Saito, Masanobu Honda
  • Patent number: 8642483
    Abstract: A substrate processing method that processes a substrate including a processing target layer, an intermediate layer, and a mask layer as stacked in that order. The intermediate layer includes an Si-ARC (Si-containing Anti-Reflection Coating) film and the mask layer has an opening exposing a part of the Si-ARC. The substrate processing method includes a shrink etching step during which an opening width reduction process and an etching process are performed concurrently. In the opening width reduction process, deposits are formed on a sidewall surface of the opening of the mask layer by a plasma generated from a gaseous mixture of an anisotropic etching gas and one of a depositive gas and H2 gas. And in the etching process, the Si-ARC film forming a bottom portion of the opening are etched.
    Type: Grant
    Filed: February 19, 2010
    Date of Patent: February 4, 2014
    Assignee: Tokyo Electron Limited
    Inventor: Masanobu Honda