Patents by Inventor Masanobu Honda

Masanobu Honda has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8157952
    Abstract: A plasma processing chamber that enables an amount of attached polymer to be controlled easily with a simple construction. A vessel 11 houses a semiconductor wafer W. A susceptor 12 is disposed in the vessel 11 and is connected to a lower electrode radio frequency power source 20. In a plasma processing chamber 10, RIE and ashing can be carried out on the semiconductor wafer W using plasma produced from processing gases introduced into the vessel 11. A side wall member 45 is disposed in the vessel 11 and exposed to the plasma. A potential of the side wall member 45 is set to either a floating potential or a ground potential in accordance with which of RIE and ashing is carried out.
    Type: Grant
    Filed: May 30, 2006
    Date of Patent: April 17, 2012
    Assignee: Tokyo Electron Limited
    Inventors: Masanobu Honda, Toshihiro Hayami
  • Patent number: 8141514
    Abstract: A plasma processing apparatus having a substrate processing chamber, which enables leakage of plasma into an exhaust space to be prevented. The substrate processing chamber has therein a processing space in which plasma processing is carried out on a substrate, an exhaust space for exhausting gas out of the processing space, and an exhaust flow path that communicates the exhaust space and the processing space together. The plasma processing apparatus further has a grounding component that is electrically grounded and is disposed in the exhaust flow path. The grounding component has a conducting portion made of a conductive material, and the conducting portion has an exposed area exposed to the exhaust flow path in a range of 100 to 1000 cm2.
    Type: Grant
    Filed: March 15, 2007
    Date of Patent: March 27, 2012
    Assignee: Tokyo Electron Limited
    Inventors: Masanobu Honda, Naoki Matsumoto, Satoshi Tanaka, Yutaka Matsui
  • Patent number: 8128831
    Abstract: A plasma processing apparatus includes a first and a second electrode disposed to face each other in a processing chamber, the second electrode supporting a substrate; a first RF power supply for applying a first RF power of a higher frequency to the second electrode; a second RF power supply for applying a second RF power of a lower frequency to the second electrode; and a DC power source for applying a DC voltage to the first electrode. In a plasma etching method for etching a substrate by using the plasma processing apparatus, the first and the second radio frequency power are applied to the second electrode to convert a processing gas containing no CF-based gas into a plasma and a DC voltage is applied to the first electrode, to thereby etch an organic film or an amorphous carbon film on the substrate by using a silicon-containing mask.
    Type: Grant
    Filed: December 28, 2006
    Date of Patent: March 6, 2012
    Assignee: Tokyo Electron Limited
    Inventors: Manabu Sato, Yoshiki Igarashi, Yoshimitsu Kon, Masanobu Honda
  • Patent number: 8104428
    Abstract: A plasma processing apparatus that enables formation of a deposit film on a surface of a grounding electrode to be prevented. A substrate processing chamber has therein a processing space in which plasma processing is carried out on a substrate, an RF electrode that applies radio frequency electrical power into the processing space, a DC electrode that applies a DC voltage into the processing space, and a grounding electrode at least part of which is exposed in the substrate processing chamber. The grounding electrode is disposed in a corner portion formed through intersection of a plurality of internal surfaces in the substrate processing chamber.
    Type: Grant
    Filed: March 21, 2007
    Date of Patent: January 31, 2012
    Assignee: Tokyo Electron Limited
    Inventors: Masanobu Honda, Noriaki Kodama
  • Patent number: 8105949
    Abstract: A substrate processing method that forms an opening, which has a size that fills the need for downsizing a semiconductor device and is to be transferred to an amorphous carbon film, in a photoresist film of a substrate to be processed. Deposit is accumulated on a side wall surface of the opening in the photoresist film using plasma produced from a deposition gas having a gas attachment coefficient S of 0.1 to 1.0 so as to reduce the opening width of the opening.
    Type: Grant
    Filed: June 29, 2009
    Date of Patent: January 31, 2012
    Assignee: Tokyo Electron Limited
    Inventors: Masanobu Honda, Hironobu Ichikawa
  • Publication number: 20120000886
    Abstract: The substrate processing apparatus includes a process chamber which accommodates a wafer and performs a plasma etching process on the wafer, an exhaust chamber which communicates with the process chamber, an exhaust plate which divides the process chamber from the exhaust chamber and prevents plasma inside the process chamber from leaking into the exhaust chamber, and an upper electrode plate arranged inside the exhaust chamber, wherein the exhaust plate includes a plurality of through holes, and the upper electrode plate includes a plurality of through holes, is capable of contacting the exhaust plate in parallel, and is capable of being spaced apart from the exhaust plate.
    Type: Application
    Filed: July 1, 2011
    Publication date: January 5, 2012
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Masanobu HONDA, Kazuhiro KUBOTA, Yoshinobu OOYA, Masaru NISHINO
  • Patent number: 8057603
    Abstract: A method of cleaning a substrate processing chamber that enables formation of an oxide film on a surface of a processing chamber inside component to be prevented. A substrate processing chamber 11 has therein a processing space S into which a wafer W is transferred and carries out reactive ion etching on the wafer W in the processing space S. The substrate processing chamber 11 has an upper electrode plate 38 that comprises silicon and a lower surface of which is exposed to the processing space S. A dry cleaning is carried out on the upper electrode plate 38 using oxygen radicals produced from oxygen gas introduced into the processing space S. An oxide removal processing is carried out on the upper electrode plate 38 using fluorine ions and fluorine radicals produced from carbon tetrafluoride gas introduced into the processing space S.
    Type: Grant
    Filed: February 5, 2007
    Date of Patent: November 15, 2011
    Assignee: Tokyo Electron Limited
    Inventors: Masanobu Honda, Yutaka Matsui
  • Publication number: 20110240599
    Abstract: A plasma processing apparatus for generating a plasma in a plasma processing space in a processing chamber and plasma-processing a target object includes a plasma-exciting high frequency power supply for applying a plasma-exciting high frequency power. Further, the plasma processing apparatus includes at least one of a potential-controlling high frequency power supply for applying a potential-controlling high frequency power having a frequency lower than that of the plasma-exciting high frequency power and a DC power supply for applying a DC voltage; and a mounting table for mounting thereon a target object. Furthermore, the plasma processing apparatus includes an auxiliary electrode, provided at a position outer side of the target object mounted on the mounting table while facing the mounting table, connected to at least one of the potential-controlling high frequency power supply and the DC power supply.
    Type: Application
    Filed: March 31, 2011
    Publication date: October 6, 2011
    Applicant: TOKYO ELECTRON LIMITED
    Inventor: Masanobu HONDA
  • Publication number: 20110220609
    Abstract: There are provided a plasma etching method and a plasma etching apparatus capable of independently controlling distributions of line widths and heights of lines in a surface of a wafer. The plasma etching method for performing a plasma etching on a substrate W by irradiating plasma containing charged particles and neutral particles to the substrate W includes controlling a distribution of reaction amounts between the substrate W and the neutral particles in a surface of the substrate W by adjusting a temperature distribution in the surface of the substrate W supported by a support 105, and controlling a distribution of irradiation amounts of the charged particles in the surface of the substrate W by adjusting a gap between the substrate W supported by the support 105 and an electrode 120 provided so as to face the support 105.
    Type: Application
    Filed: March 10, 2011
    Publication date: September 15, 2011
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Hidetami Yaegashi, Masanobu Honda, Akitaka Shimizu
  • Publication number: 20110114113
    Abstract: There is provided a cleaning method for a substrate processing apparatus capable of improving a removing rate of a deposit without increasing a self-bias voltage. The cleaning method includes supplying, to clean the inside of a processing chamber 102 under preset processing conditions, a processing gas including an O2 gas and an inert gas into the processing chamber at a preset flow rate ratio of the processing gas; and generating plasma of the processing gas by applying a high frequency power between a lower electrode 111 and a upper electrode 120. Here, the preset flow rate ratio of the processing gas is set depending on a self-bias voltage of the lower electrode 111 such that a flow rate ratio of the O2 gas is reduced while a flow rate ratio of the Ar gas is increased as an absolute value of the self-bias voltage decreases.
    Type: Application
    Filed: November 17, 2010
    Publication date: May 19, 2011
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Masanobu Honda, Takahiro Murakami, Takanori Mimura, Hidetoshi Hanaoka
  • Publication number: 20110117288
    Abstract: There is provided a substrate processing apparatus capable of effectively suppressing non-uniformity in deposition degree on a surface of a substrate. A substrate processing method includes depositing a deposit on a sidewall of each opening of a resist pattern, which is formed on an antireflection film on an etching target film of the substrate and is provided with a plurality of openings, before etching the etching target film of the substrate. Plasma is generated in the depositing process by introducing a CHF-based gas into the processing chamber at a flow rate equal to or higher than about 1000 sccm while a pressure in the processing chamber is set to equal to or higher than about 100 mTorr.
    Type: Application
    Filed: November 11, 2010
    Publication date: May 19, 2011
    Applicant: TOKYO ELECTRON LIMITED
    Inventor: Masanobu Honda
  • Publication number: 20110088850
    Abstract: A plasma processing apparatus that enables polymer to be removed from an electrically insulated electrode. A susceptor of the plasma processing apparatus is disposed in a substrate processing chamber having a processing space therein. A radio frequency power source is connected to the susceptor. An upper electrode plate is electrically insulated from a wall of the substrate processing chamber and from the susceptor. A DC power source is connected to the upper electrode plate. A controller of the plasma processing apparatus determines a value of a negative DC voltage to be applied to the upper electrode plate in accordance with processing conditions for RIE processing to be carried out.
    Type: Application
    Filed: December 20, 2010
    Publication date: April 21, 2011
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Masanobu HONDA, Yutaka Matsui, Manabu Sato
  • Publication number: 20110048453
    Abstract: Provided is a chamber cleaning method capable of efficiently removing a CF-based shoulder deposit containing Si and Al deposited on an outer periphery of an ESC. A mixed gas of an O2 gas and a F containing gas is supplied toward an outer periphery 24a of an ESC 24 at a pressure ranging from about 400 mTorr to about 800 mTorr; plasma generated from the mixed gas is irradiated onto the outer periphery 24a of the ESC 24; an O2 single gas as a mask gas is supplied to the top surface of ESC 24 except the outer periphery 24a; and the shoulder deposit 50 adhered to the outer periphery 24a is decomposed and removed while preventing the top surface of ESC 24 except the outer periphery 24a from being exposed to a F radical.
    Type: Application
    Filed: September 1, 2010
    Publication date: March 3, 2011
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Masanobu Honda, Hidetoshi Hanaoka, Taichi Hirano, Takanori Mimura, Manabu Iwata, Taketoshi Okajo
  • Patent number: 7895970
    Abstract: A structure for a plasma processing chamber which makes it possible to control the potential therein and simplify the construction of the plasma processing chamber. A gas-introducing showerhead 34 is disposed in the plasma processing chamber 10 including a container 11 having a process space S for receiving a semiconductor wafer W, and a susceptor 12 disposed in the container 11, for mounting the received semiconductor wafer W thereon. The susceptor 12 is connected to high-frequency power supplies 20 and 46. An electrode support 39 of the gas-introducing showerhead 34 is electrically grounded. An electrically floating top electrode plate 38 of the gas-introducing showerhead 34 is disposed between the electrode support 39 and the process space S. The top electrode plate 38 has a surface exposed to the process space S. An insulating film 48 is formed of a dielectric material and disposed between the electrode support 39 and the top electrode plate 38.
    Type: Grant
    Filed: September 29, 2006
    Date of Patent: March 1, 2011
    Assignee: Tokyo Electron Limited
    Inventors: Masanobu Honda, Toshihiro Hayami, Yutaka Matsui
  • Patent number: 7883631
    Abstract: A plasma etching method includes the step of performing a plasma etching on a silicon-containing dielectric layer formed on a substrate to be processed by using a plasma, while using an organic layer as a mask. In addition, the plasma is generated from a processing gas at least including a first fluorocarbon gas which is an unsaturated gas; a second fluorocarbon gas which is an aliphatic saturated gas expressed by CmF2m+2 (m=5, 6); and an oxygen gas. Further, a computer-readable storage medium for storing therein a computer executable control program is provided where the control program, when executed, controls a plasma etching apparatus to perform the above plasma etching method.
    Type: Grant
    Filed: March 6, 2007
    Date of Patent: February 8, 2011
    Assignee: Tokyo Electron Limited
    Inventors: Akinori Kitamura, Masanobu Honda, Nozomi Hirai
  • Patent number: 7883632
    Abstract: A plasma processing apparatus that enables polymer to be removed from an electrically insulated electrode. A susceptor of the plasma processing apparatus is disposed in a substrate processing chamber having a processing space therein. A radio frequency power source is connected to the susceptor. An upper electrode plate is electrically insulated from a wall of the substrate processing chamber and from the susceptor. A DC power source is connected to the upper electrode plate. A controller of the plasma processing apparatus determines a value of a negative DC voltage to be applied to the upper electrode plate in accordance with processing conditions for RIE processing to be carried out.
    Type: Grant
    Filed: March 21, 2007
    Date of Patent: February 8, 2011
    Assignee: Tokyo Electron Limited
    Inventors: Masanobu Honda, Yutaka Matsui, Manabu Sato
  • Publication number: 20100311245
    Abstract: A substrate processing method performs a processing on a wafer W having an amorphous carbon film 51, a SiON film 52, a BARC film 53 and a photoresist film 54 formed on top of each other in sequence. In the substrate processing method, a shrinking-etching process and a non-uniformity-suppressing process are performed as a single process. The shrinking-etching process etches the SiON film 52 on bottom portions of openings 55 of the photoresist film 54 while reducing CD values of the openings 55 by plasma generated from a gaseous mixture of a CHF3 gas, a CF3I gas, a H2 gas and a N2 gas. The non-uniformity-suppressing process suppresses non-uniformity in the CD values by facilitating deposition of deposits on sidewall surfaces of the openings 55.
    Type: Application
    Filed: June 3, 2010
    Publication date: December 9, 2010
    Applicant: TOKYO ELECTRON LIMITED
    Inventor: Masanobu Honda
  • Patent number: 7794616
    Abstract: An etching gas for etching an oxide film formed on a substrate, includes a main gas composed of an unsaturated fluorocarbon-based gas; and an additive gas composed of a straight-chain saturated fluorocarbon-based gas expressed by CXF(2X+2) (x represents a natural number of 5 or larger). The additive gas is C5F12 gas, C6F14 gas or C7F16 gas. Another etching gas includes a main gas composed of an unsaturated fluorocarbon-based gas; and an additive gas composed of a cyclic saturated fluorocarbon-based gas expressed by CXF2X (X represents a natural number of 5 or larger). In this case, the additive gas is C5F10 gas or C6F12 gas.
    Type: Grant
    Filed: August 9, 2005
    Date of Patent: September 14, 2010
    Assignee: Tokyo Electron Limited
    Inventors: Masanobu Honda, Akinori Kitamura, Kazuya Nagaseki
  • Publication number: 20100216314
    Abstract: A substrate processing method that processes a substrate including a processing target layer, an intermediate layer, and a mask layer as stacked in that order. The intermediate layer includes an Si-ARC (Si-containing Anti-Reflection Coating) film and the mask layer has an opening exposing a part of the Si-ARC. The substrate processing method includes a shrink etching step during which an opening width reduction process and an etching process are performed concurrently. In the opening width reduction process, deposits are formed on a sidewall surface of the opening of the mask layer by a plasma generated from a gaseous mixture of an anisotropic etching gas and one of a depositive gas and H2 gas. And in the etching process, the Si-ARC film forming a bottom portion of the opening are etched.
    Type: Application
    Filed: February 19, 2010
    Publication date: August 26, 2010
    Applicant: TOKYO ELECTRON LIMITED
    Inventor: Masanobu HONDA
  • Patent number: 7749914
    Abstract: The present invention is a plasma etching method including: an arranging step of arranging a pair of electrodes oppositely in a chamber and making one of the electrodes support a substrate to be processed in such a manner that the substrate is arranged between the electrodes, the substrate having an organic-material film; and an etching step of applying a high-frequency electric power to at least one of the electrodes to form a high-frequency electric field between the pair of the electrodes, supplying a process gas into the chamber to form a plasma of the process gas by means of the electric field, and plasma-etching the organic-material film of the substrate by means of the plasma partway in order to form a groove having a flat bottom. A frequency of the high-frequency electric power applied to the at least one of the electrodes is 50 to 150 MHz in the etching step.
    Type: Grant
    Filed: October 8, 2004
    Date of Patent: July 6, 2010
    Assignees: Tokyo Electron Limited, Kabushiki Kaisha Toshiba
    Inventors: Masanobu Honda, Kazuya Nagaseki, Hisataka Hayashi