Patents by Inventor Masanori Yoshida

Masanori Yoshida has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200326399
    Abstract: An object is to provide a magnetic sensor module reducing influence of heat generated from a coil on a magnetic sensor. A conventional method requires, on a magnetic sensor chip, multiple temperature measuring circuits corresponding to multiple magnetic sensors, and many pads for connection to an IC chip. Therefore, the problem is increase in size of the sensor chip mounting the sensors and in manufacturing cost. Provided is a magnetic sensor module comprising an IC chip including a first coil, a first pad connected to one end of the coil, and a second pad to the other end; a magnetic sensor chip disposed on the IC chip's surface, including a first magnetic sensor detecting first axial magnetism; a first external output terminal; a first conductive wire for connecting the first pad and terminal; a second external output terminal; and a second conductive wire for connecting the second pad and terminal.
    Type: Application
    Filed: June 26, 2020
    Publication date: October 15, 2020
    Applicants: Asahi Kasei Microdevices Corporation, TDK Corporation, TDK Corporation
    Inventors: Masanori YOSHIDA, Yoshitaka OKUTSU, Kazuhiro ISHIDA, Kazuya WATANABE, Hiraku HIRABAYASHI, Masanori SAKAI
  • Publication number: 20200191547
    Abstract: A magnetic sensor device includes a composite chip component, and a sensor chip mounted on the composite chip component. The sensor chip includes a first magnetic sensor, a second magnetic sensor, and a third magnetic sensor that detect components of an external magnetic field that are in directions parallel to an X direction, parallel to a Y direction, and parallel to a Z direction, respectively. The composite chip component includes a first magnetic field generator, a second magnetic field generator, and a third magnetic field generator for generating additional magnetic field components that are in directions parallel to the X direction, parallel to the Y direction, and parallel to the Z direction, respectively.
    Type: Application
    Filed: December 2, 2019
    Publication date: June 18, 2020
    Applicants: TDK CORPORATION, ASAHI KASEI MICRODEVICES CORPORATION
    Inventors: Kazuya WATANABE, Hiraku HIRABAYASHI, Yoshitaka OKUTSU, Masanori YOSHIDA
  • Patent number: 10639335
    Abstract: An object of the present invention is to provide a novel medical application for use in regenerative medicine that uses pluripotent stem cells (Muse cells). The present invention provides a cell preparation for treating myocardial infarction, and particularly serious massive myocardial infarction and heart failure associated therewith, that contains pluripotent stem cells positive for SSEA-3 isolated from biological mesenchymal tissue or cultured mesenchymal cells. The cell preparation of the present invention is based on a cardiac tissue regeneration mechanism by which Muse cells are made to selectively accumulate in damaged myocardial tissue and differentiate into cardiac muscle in that tissue as a result of intravenous administration of Muse cells to a subject presenting with the aforementioned disorders.
    Type: Grant
    Filed: June 25, 2019
    Date of Patent: May 5, 2020
    Assignees: CLIO, INC., GIFU UNIVERSITY, TOHOKU UNIVERSITY
    Inventors: Masanori Yoshida, Shinya Minatoguchi, Mari Dezawa
  • Publication number: 20200116801
    Abstract: A magnetic sensor device includes three magnetic sensors for detecting components of an external magnetic field that are in three directions, a magnetic field generation section, and a correction processor. The magnetic field generation section generates additional magnetic field components in three directions used for measurements of main- and cross-axis sensitivities of the three magnetic sensors. The correction processor corrects respective detection signals of the three magnetic sensors on the basis of the measurement results of the main- and cross-axis sensitivities of the magnetic sensors.
    Type: Application
    Filed: September 30, 2019
    Publication date: April 16, 2020
    Applicants: TDK CORPORATION, ASAHI KASEI MICRODEVICES CORPORATION
    Inventors: Kazuya WATANABE, Yoshitaka OKUTSU, Masanori YOSHIDA
  • Publication number: 20190307806
    Abstract: An object of the present invention is to provide a novel medical application for use in regenerative medicine that uses pluripotent stem cells (Muse cells). The present invention provides a cell preparation for treating myocardial infarction, and particularly serious massive myocardial infarction and heart failure associated therewith, that contains pluripotent stem cells positive for SSEA-3 isolated from biological mesenchymal tissue or cultured mesenchymal cells. The cell preparation of the present invention is based on a cardiac tissue regeneration mechanism by which Muse cells are made to selectively accumulate in damaged myocardial tissue and differentiate into cardiac muscle in that tissue as a result of intravenous administration of Muse cells to a subject presenting with the aforementioned disorders.
    Type: Application
    Filed: June 25, 2019
    Publication date: October 10, 2019
    Applicants: CLIO, INC., GIFU UNIVERSITY, TOHOKU UNIVERSITY
    Inventors: Masanori Yoshida, Shinya Minatoguchi, Mari Dezawa
  • Patent number: 10376544
    Abstract: An object of the present invention is to provide a novel medical application for use in regenerative medicine that uses pluripotent stem cells (Muse cells). The present invention provides a cell preparation for treating myocardial infarction, and particularly serious massive myocardial infarction and heart failure associated therewith, that contains pluripotent stem cells positive for SSEA-3 isolated from biological mesenchymal tissue or cultured mesenchymal cells. The cell preparation of the present invention is based on a cardiac tissue regeneration mechanism by which Muse cells are made to selectively accumulate in damaged myocardial tissue and differentiate into cardiac muscle in that tissue as a result of intravenous administration of Muse cells to a subject presenting with the aforementioned disorders.
    Type: Grant
    Filed: November 3, 2017
    Date of Patent: August 13, 2019
    Assignees: CLIO, INC., GIFU UNIVERSITY, TOHOKU UNIVERSITY
    Inventors: Masanori Yoshida, Shinya Minatoguchi, Mari Dezawa
  • Patent number: 10369162
    Abstract: The purpose of the present invention is to identify a migratory factor that guides pluripotent stem cells (Muse cells) useful in new medical applications to damage, and to provide a pharmaceutical composition that includes the migratory factor for promoting tissue regeneration in regenerative medicine that makes use of Muse cells. In the present invention, a receptor that is specifically expressed in Muse cells rather than non-Muse cells was identified, and it was confirmed that a ligand for this receptor can function as a migratory factor. In the present invention, sphingosine-1-phosphate (S1P) was identified as a migratory factor, and thus, the present invention pertains to a pharmaceutical composition for guiding pluripotent stem cells to damage, the composition including S1P as an active ingredient.
    Type: Grant
    Filed: July 6, 2017
    Date of Patent: August 6, 2019
    Assignees: CLIO, INC., TOHOKU UNIVERSITY, NATIONAL UNIVERSITY CORPORATION NAGOYA UNIVERSITY
    Inventors: Mari Dezawa, Yoshinori Fujiyoshi, Masanori Yoshida
  • Patent number: 10293003
    Abstract: An object of the present invention is to provide a novel medical application to regenerative medicine that uses pluripotent stem cells (Muse cells). The present invention provides a cell preparation for treating chronic kidney disease that contains SSEA-3-positive pluripotent stem cells isolated from mesenchymal tissue in the body or cultured mesenchymal cells. The cell preparation of the present invention is based on a renal tissue regeneration mechanism by which Muse cells are made to selectively accumulate at a site of kidney disease and differentiate into cells that compose the kidney by administering Muse cells intravenously to a subject having the aforementioned disease.
    Type: Grant
    Filed: January 23, 2017
    Date of Patent: May 21, 2019
    Assignees: CLIO, INC., TOHOKU UNIVERSITY
    Inventors: Masanori Yoshida, Mari Dezawa
  • Publication number: 20190148338
    Abstract: Semiconductor device assemblies with molded support substrates and associated methods are disclosed herein. In one embodiment, a semiconductor device assembly includes a support substrate, a first semiconductor die embedded within the support substrate, a second semiconductor die coupled to the support substrate, and a third semiconductor die coupled to the support substrate. The assembly can also include a redistribution network formed on a first and/or second side of the support substrate, and a plurality of conductive contacts electrically coupled to at least one of the first, second or third semiconductor dies.
    Type: Application
    Filed: January 9, 2019
    Publication date: May 16, 2019
    Inventors: Mitsuhisa Watanabe, Fumitomo Watanabe, Masanori Yoshida
  • Patent number: 10217719
    Abstract: Semiconductor device assemblies with molded support substrates and associated methods are disclosed herein. In one embodiment, a semiconductor device assembly includes a support substrate formed from a molded material, a first semiconductor die at least partially embedded within the support substrate, a plurality of interconnects extending at least partially through the molded material, a second semiconductor die coupled to the support substrate, and a third semiconductor die coupled to the support substrate. The assembly can also include a redistribution network formed on a first and/or second side of the support substrate, and a plurality of conductive contacts electrically coupled to at least one of the first, second and third semiconductor dies.
    Type: Grant
    Filed: April 6, 2017
    Date of Patent: February 26, 2019
    Assignee: Micron Technology, Inc.
    Inventors: Mitsuhisa Watanabe, Fumitomo Watanabe, Masanori Yoshida
  • Publication number: 20190009591
    Abstract: An ink jet recording method for recording an image on a recording medium by using an aqueous reaction liquid containing a reactant and a first ink and a second ink, each a water-based ink containing a coloring material, includes a reaction liquid applying step, an image formation step for forming a first image by applying the first ink and the second ink in this order to the transfer body so as to overlap at least partially with a region to which the reaction liquid has been applied, a liquid absorption step for bringing a porous layer possessed by a liquid absorption member into contact with the first image to absorb a liquid component therefrom, and after the liquid absorption step, a transfer step for transferring the first image on the transfer body to the recording medium, and the first ink has brightness higher than the brightness of the second ink.
    Type: Application
    Filed: June 28, 2018
    Publication date: January 10, 2019
    Inventors: Masanori Yoshida, Tsuyoshi Kanke, Satoshi Takebayashi, Junichi Sakai, Akiko Tominaga
  • Publication number: 20180355313
    Abstract: Objects of the present invention are to provide a method for directly obtaining pluripotent stern cells which do not have tumorigenic property from body tissue and the thus obtained pluripotent stem cells. The present invention relates to SSEA-3 (+) pluripotent stern cells that can be isolated from body tissue.
    Type: Application
    Filed: August 17, 2018
    Publication date: December 13, 2018
    Inventors: Mari Dezawa, Yoshinori Fujiyoshi, Youichi Nabeshima, Shohei Wakao, Masanori Yoshida, Yasumasa Kuroda
  • Publication number: 20180294249
    Abstract: Semiconductor device assemblies with molded support substrates and associated methods are disclosed herein. In one embodiment, a semiconductor device assembly includes a support substrate formed from a molded material, a first semiconductor die at least partially embedded within the support substrate, a plurality of interconnects extending at least partially through the molded material, a second semiconductor die coupled to the support substrate, and a third semiconductor die coupled to the support substrate. The assembly can also include a redistribution network formed on a first and/or second side of the support substrate, and a plurality of conductive contacts electrically coupled to at least one of the first, second and third semiconductor dies.
    Type: Application
    Filed: April 6, 2017
    Publication date: October 11, 2018
    Inventors: Mitsuhisa Watanabe, Fumitomo Watanabe, Masanori Yoshida
  • Patent number: 10034889
    Abstract: The purpose of the present invention is to identify a migratory factor that guides pluripotent stem cells (Muse cells) useful in new medical applications to damage, and to provide a pharmaceutical composition that includes the migratory factor for promoting tissue regeneration in regenerative medicine that makes use of Muse cells. In the present invention, a receptor that is specifically expressed in Muse cells rather than non-Muse cells was identified, and it was confirmed that a ligand for this receptor can function as a migratory factor. In the present invention, sphingosine-1-phosphate (S1P) was identified as a migratory factor, and thus, the present invention pertains to a pharmaceutical composition for guiding pluripotent stem cells to damage, the composition including S1P as an active ingredient.
    Type: Grant
    Filed: August 16, 2016
    Date of Patent: July 31, 2018
    Assignees: CLIO, INC., TOHOKU UNIVERSITY, NATIONAL UNIVERSITY CORPORATION NAGOYA UNIVERSITY
    Inventors: Mari Dezawa, Yoshinori Fujiyoshi, Masanori Yoshida
  • Patent number: 9994355
    Abstract: A packing box has a bottom panel, end panels raised from first edges of the bottom panel, side panels arranged adjacently to the end panels, edge panels connected to side edges of the end panels via outer panel fold lines, fold-back panels arranged on inner side surfaces of the edge panels, inner panels arranged on inner side surfaces of the end panels, and reinforcing panels continuously formed with the fold-back panels via first fold lines and the inner panels via second fold lines. The reinforcing panel 16 is formed in an inwardly projecting manner between the fold-back panel and the inner panel. Any of the first and second fold lines positioned on a side closer to the outer panel fold line than a projecting top portion is arranged away from the outer panel fold line by a distance.
    Type: Grant
    Filed: September 5, 2014
    Date of Patent: June 12, 2018
    Assignee: RENGO CO., LTD.
    Inventors: Atsuo Ishikawa, Yoichi Nishikawa, Takafumi Makiuchi, Masanori Yoshida, Hiroyuki Noguchi, Hiromu Ikeda
  • Patent number: 9938039
    Abstract: A box includes a front receiving panel, a bottom surface panel, a rear surface panel, a top surface panel, and a front surface panel that are integrally connected one to another. Each pair of bottom side panels, rear side panels, top side panels, and front side panels are integrally connected to the respective sides of each of the bottom, rear, top, and front surface panels. The front receiving panel, the bottom and rear surface panels, and the bottom and rear side panels constitute a tray portion of the box, with the remaining panels constituting a lid portion of the box. A cut line for separating the lid portion from the tray portion is formed to pass through one or both of the rear surface panel and the top surface panel.
    Type: Grant
    Filed: September 30, 2014
    Date of Patent: April 10, 2018
    Assignee: Rengo Co., Ltd.
    Inventors: Yoichi Nishikawa, Atsuo Ishikawa, Takafumi Makiuchi, Akira Nagaosa, Masayuki Handa, Masanori Yoshida, Hiroyuki Noguchi, Hiromu Ikeda, Kazuyuki Ishii, Hironori Sugita, Tatsuya Fujibayashi
  • Publication number: 20180050067
    Abstract: An object of the present invention is to provide a novel medical application for use in regenerative medicine that uses pluripotent stem cells (Muse cells). The present invention provides a cell preparation for treating myocardial infarction, and particularly serious massive myocardial infarction and heart failure associated therewith, that contains pluripotent stem cells positive for SSEA-3 isolated from biological mesenchymal tissue or cultured mesenchymal cells. The cell preparation of the present invention is based on a cardiac tissue regeneration mechanism by which Muse cells are made to selectively accumulate in damaged myocardial tissue and differentiate into cardiac muscle in that tissue as a result of intravenous administration of Muse cells to a subject presenting with the aforementioned disorders.
    Type: Application
    Filed: November 3, 2017
    Publication date: February 22, 2018
    Applicants: CLIO, INC., GIFU UNIVERSITY, TOHOKU UNIVERSITY
    Inventors: Masanori Yoshida, Shinya Minatoguchi, Mari Dezawa
  • Patent number: 9844570
    Abstract: An object of the present invention is to provide a novel medical application for use in regenerative medicine that uses pluripotent stem cells (Muse cells). The present invention provides a cell preparation for treating myocardial infarction, and particularly serious massive myocardial infarction and heart failure associated therewith, that contains pluripotent stem cells positive for SSEA-3 isolated from biological mesenchymal tissue or cultured mesenchymal cells. The cell preparation of the present invention is based on a cardiac tissue regeneration mechanism by which Muse cells are made to selectively accumulate in damaged myocardial tissue and differentiate into cardiac muscle in that tissue as a result of intravenous administration of Muse cells to a subject presenting with the aforementioned disorders.
    Type: Grant
    Filed: August 15, 2013
    Date of Patent: December 19, 2017
    Assignees: CLIO, INC., GIFU UNIVERSITY, TOHOKU UNIVERSITY
    Inventors: Masanori Yoshida, Shinya Minatoguchi, Mari Dezawa
  • Publication number: 20170304326
    Abstract: The purpose of the present invention is to identify a migratory factor that guides pluripotent stem cells (Muse cells) useful in new medical applications to damage, and to provide a pharmaceutical composition that includes the migratory factor for promoting tissue regeneration in regenerative medicine that makes use of Muse cells. In the present invention, a receptor that is specifically expressed in Muse cells rather than non-Muse cells was identified, and it was confirmed that a ligand for this receptor can function as a migratory factor. In the present invention, sphingosine-1-phosphate (S1P) was identified as a migratory factor, and thus, the present invention pertains to a pharmaceutical composition for guiding pluripotent stem cells to damage, the composition including S1P as an active ingredient.
    Type: Application
    Filed: July 6, 2017
    Publication date: October 26, 2017
    Applicants: CLIO, INC., TOHOKU UNIVERSITY, NATIONAL UNIVERSITY CORPORATION NAGOYA UNIVERSITY
    Inventors: Mari Dezawa, YOSHINORI FUJIYOSHI, MASANORI YOSHIDA
  • Patent number: 9738803
    Abstract: An aqueous ink for ink jet including a resin particle. The resin particle includes a first layer and a second layer in this order from the inside to the outside thereof. The first layer is composed of a first resin, wherein the proportion of a unit derived from an aromatic-group-containing ethylenically unsaturated monomer in the first resin is 10% by mass or less. The second layer has a tetrahydrofuran-insoluble fraction of 10% by mass or more and is composed of a second resin having a unit derived from an aromatic-group-containing ethylenically unsaturated monomer and a unit derived from an ionic-group-containing ethylenically unsaturated monomer, wherein the proportion of the unit derived from the ionic-group-containing ethylenically unsaturated monomer in the second resin is 3% by mass or more to 70% by mass or less.
    Type: Grant
    Filed: May 6, 2016
    Date of Patent: August 22, 2017
    Assignee: Canon Kabushiki Kaisha
    Inventors: Takayuki Horiuchi, Satoru Kobayashi, Masanori Yoshida, Shuichiro Tanimoto, Naofumi Shimomura