Patents by Inventor Masao Saito

Masao Saito has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150138732
    Abstract: A semiconductor device includes: a first output unit configured to output a first phase; a second output unit configured to output a second phase different from the first phase, the second output unit being disposed to be stacked on the first output unit; and a controller configured to control the output units.
    Type: Application
    Filed: January 28, 2015
    Publication date: May 21, 2015
    Inventors: Keiji Okumura, Takukazu Otsuka, Masao Saito
  • Patent number: 9018985
    Abstract: A power module (2) includes a first high-side main-circuit MOSFET (21) and a second low-side main-circuit MOSFET (22) connected in series thereto. The series circuit of the MOSFETs (21, 22) is connected in parallel to a power source (4). A first short-circuit MOSFET (25) is connected between the gate and the source of the first main-circuit MOSFET (21). A second short-circuit MOSFET (26) is connected between the gate and the source of the second main-circuit MOSFET (22).
    Type: Grant
    Filed: August 4, 2011
    Date of Patent: April 28, 2015
    Assignee: Rohm Co., Ltd.
    Inventors: Takashi Sawada, Masao Saito
  • Publication number: 20150104676
    Abstract: A battery for automotive electrical system comprises a lead battery having an outer shape of a rectangular box and having length longer than the width, and a sub-battery connected in parallel to the lead battery. A first main terminal as a positive electrode terminal and a second terminal as a negative electrode terminal are disposed at both ends adjacent to a long side on an upper surface. The first main terminal as an output terminal of the lead battery is connected to a vehicle lead line, and the second main terminal is connected to the sub-battery. The sub-battery has a structure in which plural cells are stored in an outer case, and the outer case is disposed outside an end portion in the lengthwise direction of the lead battery and adjacent to the second main terminal of the lead battery, and the lead battery and the sub-battery are coupled.
    Type: Application
    Filed: June 4, 2013
    Publication date: April 16, 2015
    Inventors: Wataru Okada, Masao Saito, Fumio Yasutomi
  • Patent number: 8971044
    Abstract: A semiconductor device includes: a first output unit configured to output a first phase; a second output unit configured to output a second phase different from the first phase, the second output unit being disposed to be stacked on the first output unit; and a controller configured to control the output units.
    Type: Grant
    Filed: May 23, 2012
    Date of Patent: March 3, 2015
    Assignee: Rohm Co., Ltd.
    Inventors: Keiji Okumura, Takukazu Otsuka, Masao Saito
  • Publication number: 20140233280
    Abstract: An electric power conversion device comprises a conversion circuit having bi-directionally switchable plural pairs of switching elements connected to respective phases and converting an inputted AC power into an AC electric power. A first switching time is calculated using detected voltages detected by voltage sensors and an output command value. A second switching time is calculated using a carrier and the first switching time. A control signal generating section generates control signals to switch on and off of the switching elements using the first switching time and second switching time. In a case where a state is transited from the first switching time to the second switching time, a controller tarns off one of on state switching elements of either one of an upper arm circuit or a lower arm circuit and maintains on state of the other of the on state switching elements of the other arm circuit.
    Type: Application
    Filed: September 6, 2012
    Publication date: August 21, 2014
    Inventors: Masao Saito, Takamasa Nakamura, Kouji Yamamoto, Junichi Itoh, Yoshiya Ohnuma
  • Publication number: 20140226386
    Abstract: An electric power conversion device comprises a conversion circuit having bi-directionally switchable plural pairs of switching elements connected to respective phases and converting an inputted AC power into an AC electric power. A first switching time is calculated using detected voltages detected by voltage sensors and an output command value. A second switching time is calculated in a form of a time which is a subtraction of the first switching time from a half period of a carrier and, using this time, control signals to switch on and off of the switching elements are generated.
    Type: Application
    Filed: September 6, 2012
    Publication date: August 14, 2014
    Inventors: Masao Saito, Takamasa Nakamura, Kouji Yamamoto, Junichi Itoh, Yoshiya Ohnuma
  • Publication number: 20140226382
    Abstract: An electric power conversion device comprises a conversion circuit having bi-directionally switchable plural pairs of switching elements connected to respective phases and converting an inputted AC power into an AC electric power. A first switching time is calculated using detected voltages detected by voltage sensors and an output command value. A second switching time is calculated using a carrier and the calculated first switching time. The second switching time is such that, in one period of the alternating current electric power outputted from the conversion circuit, the second switching time included in a first half period of the one period is equal to the second switching time included in a second half period of the one period.
    Type: Application
    Filed: September 6, 2012
    Publication date: August 14, 2014
    Inventors: Masao Saito, Takamasa Nakamura, Kouji Yamamoto, Junichi Itoh, Yoshiya Ohnuma
  • Publication number: 20140192578
    Abstract: Provided is a power converter 3 that directly converts polyphase AC power to AC power. A converter circuit has a plurality of first switching elements 311, 313 and 315 that are connected to each phase R, S or T of the polyphase AC power to enable switching for turning on current-carrying bidirectionally, and a plurality of second switching elements 312, 314 and 316 that are connected to each phase to enable switching for turning on current-carrying bidirectionally. The converter circuit comprises input lines R, S and T connected to each input terminal, and output lines P and N connected to each output terminal. Parts of wiring 347 and 348 of protection circuits 32 are located between output lines P and N. The wiring distance between each protection circuit 32 and the corresponding switching element can be shortened.
    Type: Application
    Filed: May 7, 2012
    Publication date: July 10, 2014
    Applicants: Nagaoka University of Technology, NISSAN MOTOR CO., LTD
    Inventors: Hironori Koyano, Takamasa Nakamura, Masao Saito, Kouji Yamamoto, Tsutomu Matsukawa, Manabu Koshijo, Junichi Itoh, Yoshiya Ohnuma
  • Publication number: 20140185326
    Abstract: There is disclosed a power conversion apparatus 3 for converting polyphase ac power directly to ac power. A conversion circuit includes a plurality of first switching devices 311, 313, 315 and a plurality of second switching devices 312, 314, 316 connected, respectively, with the phases R, S, T of the polyphase ac power, and configured to enable electrical switching operation in both directions. Output lines 331, 332 formed by a pair of busbars are connected with the conversion circuit. The first switching devices and the second switching devices are so arranged that output terminals are arranged in a row. The output lines 331, 332 are connected with the output terminals and drawn out rectilinearly in one direction.
    Type: Application
    Filed: May 7, 2012
    Publication date: July 3, 2014
    Inventors: Hironori Koyano, Takamasa Nakamura, Masao Saito, Kouji Yamamoto, Tsutomu Matsukawa, Manabu Koshijo, Junichi Itoh, Yoshiya Ohnuma
  • Publication number: 20140126263
    Abstract: There is disclosed a power conversion apparatus 3 for converting polyphase ac power directly to ac power. A conversion circuit includes first switching devices 311, 313, 315 and second switching devices 312, 314, 316 connected, respectively, with the phases R, S, T of the polyphase ac power, and configured to enable electrical switching operation in both directions. There are provided input lines R, S, T connected with input terminals of the switching devices and output lines P, N connected with output terminals of the switching devices. The output terminals of the first switching devices and the output terminals of the second switching devices are, respectively, arranged in a row. The first switching devices and second switching devices are arranged side by side with respect to a direction of the rows. The output lines are disposed below the input lines in an up and down direction.
    Type: Application
    Filed: May 7, 2012
    Publication date: May 8, 2014
    Inventors: Hironori Koyano, Takamasa Nakamura, Masao Saito, Kouji Yamamoto, Tsutomu Matsukawa, Manabu Koshijo, Junichi Itoh, Yoshiya Ohnuma
  • Publication number: 20140104913
    Abstract: Provided is a power converter 3 that directly converts polyphase AC power to AC power. A converter circuit has a plurality of switching elements 311, 313, 315, 312, 314 and 316 which are connected to each phase R, S or T of the polyphase AC power to enable switching for turning on current-carrying bidirectionally. At least three condensers 821 to 826 are provided between phases of the converter circuit. The three condensers are respectively placed at apexes of a triangle on a plane that is in parallel with a part-mounting surface on which the switching elements are actually mounted. The wiring distance between the condensers and the switching elements can be shortened.
    Type: Application
    Filed: May 7, 2012
    Publication date: April 17, 2014
    Inventors: Hironori Koyano, Takamasa Nakamura, Masao Saito, Kouji Yamamoto, Tsutomu Matsukawa, Manabu Koshijo, Junichi Itoh, Yoshiya Ohnuma
  • Publication number: 20140085950
    Abstract: Provided is a power converter 3 that directly converts polyphase AC power to AC power. A converter circuit has a plurality of first switching elements 311, 313 and 315 and a plurality of second switching elements 312, 314 and 316, both of which are connected to each phase R, S or T of the polyphase AC power to enable switching for turning on current-carrying bidirectionally. Condensers 821 to 826 are provided between phases. Input terminals of the first switching elements and those of the second switching elements are arranged to form respective lines. Some of the plurality of condensers 821 and 822 are arranged to be angled relative to the arrangement direction of the terminals. The wiring distance between the condensers and the switching elements can be shortened.
    Type: Application
    Filed: May 7, 2012
    Publication date: March 27, 2014
    Applicants: Nagaoka University of Technology, NISSAN MOTOR CO., LTD
    Inventors: Hironori Koyano, Takamasa Nakamura, Masao Saito, Kouji Yamamoto, Tsutomu Matsukawa, Manabu Koshijo, Junichi Itoh, Yoshiya Ohnuma
  • Publication number: 20140085956
    Abstract: A power conversion apparatus is for converting polyphase ac power directly to ac power. A conversion circuit includes a plurality of first switching devices 311, 313, 315 and a plurality of second switching devices 312, 314, 316 connected, respectively, with the phases R, S, T of the polyphase ac power, and configured to enable electrical switching operation in both directions. There are provided a plurality of condensers 821˜826 connected with the conversion circuit. At least one of the condensers is provided, for each of the first switching devices and the second switching devices, between two of the phases of the polyphase ac power. It is possible to reduce a wiring distance between the condenser and the switching devices.
    Type: Application
    Filed: May 7, 2012
    Publication date: March 27, 2014
    Inventors: Hironori Koyano, Takamasa Nakamura, Masao Saito, Kouji Yamamoto, Tsutomu Matsukawa, Manabu Koshijo, Junichi Itoh, Yoshiya Ohnuma
  • Patent number: 8507122
    Abstract: A power supply device includes rectangular battery cells 1, resin separators 2, end spacers 17, thick metal end plates 10, and coupling members 11. The separator 2 is inserted between the cells 1 to insulate adjacent cells 1 from each other, and in thermal contact with the cells 1. The end spacers 17 cover end battery cells 1 on the opposed end surfaces of a battery block composed of the cells 1 and the separators 2 alternately arranged. The end plates 10 cover the surfaces of the end spacers 17. The coupling members 11 couple the end plates 10 to each other. The separators 2 form gaps 4 for flowing air along the surfaces of the cells 1 in contact with the separators 2. The end spacers 17 have hollow layers 18 on their surfaces in contact with the cells 1, and define closed chambers.
    Type: Grant
    Filed: October 28, 2010
    Date of Patent: August 13, 2013
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Masao Saito, Tomokazu Takashina, Tsuyoshi Takahashi
  • Patent number: 8507121
    Abstract: A power supply device is provided that includes a battery module (3) and a cooling mechanism. The battery module is composed of a plurality of batteries (20) arranged side by side. The cooling mechanism cools the batteries (20). A thermally-insulating member (70) is arranged on a part of a battery module surface, and thermally insulates heat generated from the batteries. This power supply device can reduce the temperature unevenness ?T.
    Type: Grant
    Filed: October 28, 2010
    Date of Patent: August 13, 2013
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Masao Saito, Shinsuke Nakamura, Akinobu Wakabayashi
  • Publication number: 20130200929
    Abstract: A power module (2) includes a first high-side main-circuit MOSFET (21) and a second low-side main-circuit MOSFET (22) connected in series thereto. The series circuit of the MOSFETs (21, 22) is connected in parallel to a power source (4). A first short-circuit MOSFET (25) is connected between the gate and the source of the first main-circuit MOSFET (21). A second short-circuit MOSFET (26) is connected between the gate and the source of the second main-circuit MOSFET (22).
    Type: Application
    Filed: August 4, 2011
    Publication date: August 8, 2013
    Applicant: ROHM CO., LTD.
    Inventors: Takashi Sawada, Masao Saito
  • Patent number: 8435664
    Abstract: A battery system including battery blocks (3) having a plurality of battery cells (1) stacked with cooling gaps (4) established between the battery cells to pass cooling gas; ventilating ducts (5), which are supply ducts (6) and exhaust ducts (7), disposed on both sides of the battery blocks to forcibly ventilate the cooling gaps; and ventilating apparatus (9) to force cooling gas to flow through the ventilating ducts. Cooling gas forcibly introduced by the ventilating apparatus flows from the supply ducts through the cooling gaps and into the exhaust ducts to cool the battery cells. In addition, the battery system has temperature equalizing walls (8) disposed in the supply ducts. The temperature equalizing walls are long and narrow with length in the direction of flow greater than the width, and each temperature equalizing wall gradually narrows towards the upstream end.
    Type: Grant
    Filed: May 3, 2010
    Date of Patent: May 7, 2013
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Masao Saito, Kazunobu Yokotani, Shinsuke Nakamura
  • Patent number: 8415195
    Abstract: In manufacturing of a solar cell module in which a solar cell having a surface electrode to which a tab lead is connected is sealed with a resin, the step of connecting the tab lead and the step of sealing the solar cell with the resin are performed simultaneously at a relatively low temperature that is used for the resin sealing step. To perform these steps simultaneously, the solar cell having the surface electrode to which the tab lead is connected with an adhesive is resin-sealed using a vacuum laminator to manufacture the solar cell module. The vacuum laminator used includes a first chamber and a second chamber partitioned by a flexible sheet. The internal pressures of these chambers can be controlled independently, and a heating stage for heating is provided in the second chamber.
    Type: Grant
    Filed: May 14, 2010
    Date of Patent: April 9, 2013
    Assignee: Sony Chemical & Information Device Corporation
    Inventors: Hideaki Okumiya, Satoshi Yamamoto, Masao Saito
  • Publication number: 20120301769
    Abstract: The power source apparatus to supply electric power is provided with a battery block 3 having a plurality of rectangular batteries 1 disposed in a stacked configuration with conducting external cases 11 insulated by insulating layers 2, a cooling plate 4 disposed at the bottom of the battery block 3 in a manner that thermally couples with each rectangular battery 1 and forcibly cools each battery 1 from its bottom surface, and a cooling mechanism 5 that cools the cooling plate 4. The insulating layers 2 are formed as a unit with each external case 11 and have a fit-together structure that enables stacking in fixed positions. Each rectangular battery 1 and insulating layers 2 form a single-piece battery module 10, and a battery block 3 is made up of a plurality of stacked battery modules 10.
    Type: Application
    Filed: May 24, 2012
    Publication date: November 29, 2012
    Inventors: Wataru OKADA, Masao Saito
  • Publication number: 20120229985
    Abstract: A semiconductor device includes: a first output unit configured to output a first phase; a second output unit configured to output a second phase different from the first phase, the second output unit being disposed to be stacked on the first output unit; and a controller configured to control the output units.
    Type: Application
    Filed: May 23, 2012
    Publication date: September 13, 2012
    Applicant: ROHM CO., LTD.
    Inventors: Keiji Okumura, Takukazu Otsuka, Masao Saito