Patents by Inventor Masashi Kawasaki

Masashi Kawasaki has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8507504
    Abstract: The present invention relates to a process for producing a hydrate of 3-(2,6-dichlorophenyl)-4-imino-7-[(2?-methyl-2?,3?-dihydro-1?H-spiro[cyclopropane-1,4?-isoquinolin]-7?-yl)amino]-3,4-dihydropyrimido[4,5-d]pyrimidin-2(1H)-one (Compound A) or of a pharmaceutically acceptable salt of Compound A and a crystalline form of Compound A or of a pharmaceutically acceptable salt of Compound A, which are useful in the field of treatment of various cancers as a kinase inhibitor, especially as a Weel kinase inhibitor.
    Type: Grant
    Filed: June 2, 2009
    Date of Patent: August 13, 2013
    Assignee: Merck Sharp & Dohme Corp.
    Inventors: Shuntaro Furukawa, Taketo Ikeno, Shinji Kato, Masashi Kawasaki, Hisaki Kojima, Wataru Minagawa, Naotaka Sawada, Fuyuki Yamamoto, Sachin Lohani, Yaling Wang
  • Patent number: 8410478
    Abstract: A p-type MgxZn1-xO-based thin film (1) is formed on a substrate (2) made of a ZnO-based semiconductor. The p-type MgxZn1-xO-based thin film (1) is composed so that X as a ratio of Mg with respect to Zn therein can be 0?X<1, preferably 0?X?0.5. In the p-type MgZnO thin film (1), nitrogen as p-type impurities which become an acceptor is contained at a concentration of approximately 5.0×1018 cm?3 or more. The p-type MgZnO thin film (1) is composed so that n-type impurities made of a group IV element such as silicon that becomes a donor can have a concentration of approximately 1.0×1017 cm?3 or less. The p-type MgZnO thin film (1) is composed so that n-type impurities made of a group III element such as boron and aluminum which become a donor can have a concentration of approximately 1.0×1016 cm?3 or less.
    Type: Grant
    Filed: August 1, 2008
    Date of Patent: April 2, 2013
    Assignee: Rohm Co., Ltd.
    Inventors: Ken Nakahara, Hiroyuki Yuji, Kentaro Tamura, Shunsuke Akasaka, Masashi Kawasaki, Akira Ohtomo, Atsushi Tsukazaki
  • Publication number: 20120261658
    Abstract: A ZnO-based semiconductor device includes an n type ZnO-based semiconductor layer, an aluminum oxide film formed on the n type ZnO-based semiconductor layer, and a palladium layer formed on the aluminum oxide film. With this configuration, the n type ZnO-based semiconductor layer and the palladium layer form a Schottky barrier structure.
    Type: Application
    Filed: April 12, 2012
    Publication date: October 18, 2012
    Applicants: TOHOKU UNIVERSITY, ROHM CO., LTD.
    Inventors: Shunsuke AKASAKA, Masashi KAWASAKI, Atsushi TSUKAZAKI
  • Patent number: 8247793
    Abstract: Provided are a ZnO-based thin film and a ZnO-based semiconductor device which allow: reduction in a burden on a manufacturing apparatus; improvement of controllability and reproducibility of doping; and obtaining p-type conduction without changing a crystalline structure. In order to be formed into a p-type ZnO-based thin film, a ZnO-based thin film is formed by employing as a basic structure a superlattice structure of a MgZnO/ZnO super lattice layer 3. This superlattice component is formed with a laminated structure which includes acceptor-doped MgZnO layers 3b and acceptor-doped ZnO layers 3a. Hence, it is possible to improve controllability and reproducibility of the doping, and to prevent a change in a crystalline structure due to a doping material.
    Type: Grant
    Filed: June 13, 2008
    Date of Patent: August 21, 2012
    Assignee: Rohm Co., Ltd.
    Inventors: Ken Nakahara, Shunsuke Akasaka, Masashi Kawasaki, Akira Ohtomo, Atsushi Tsukazaki
  • Patent number: 8228059
    Abstract: Provided is a method of evaluating properties of ferrite which can continuously measure change in magnetic properties accompanying change in composition of the ferrite merely by preparing one specimen. A composition gradient ferrite thin film constituted of a plurality of composition gradient ferrite layers which are formed by inclining component composition in the horizontal direction is formed on a single crystal substrate having light transmitting property using a thin film forming method, and a magneto-optical effect is continuously measured along the composition gradient direction of the ferrite thin film whereby change in magnetic properties accompanying a change in composition of the ferrite is continuously measured also provided is a method of evaluating properties of ferrite which can continuously measure change in magnetic properties accompanying change in composition of the ferrite merely by preparing one specimen.
    Type: Grant
    Filed: March 12, 2010
    Date of Patent: July 24, 2012
    Assignees: JFE Mineral Company, Ltd., Tohoku University
    Inventors: Yosuke Iwasaki, Masashi Kawasaki, Tomoteru Fukumura
  • Publication number: 20120181531
    Abstract: A semiconductor element includes a semiconductor layer mainly composed of MgxZn1-xO (0<=x<1), in which manganese contained in the semiconductor layer as impurities has a density of not more than 1×1016 cm?3.
    Type: Application
    Filed: August 7, 2008
    Publication date: July 19, 2012
    Applicant: ROHM CO., LTD
    Inventors: Ken Nakahara, Shunsuke Akasaka, Masashi Kawasaki, Akira Ohtomo, Atsushi Tsukazaki
  • Patent number: 8198281
    Abstract: The present invention relates to the crystalline forms of 2-allyl-1-[6-(I-hydroxy-1 methylethyl)pyridin-2-yl]-6-{[4-(4-methylpiperazin-1-yl)phenyl]amino}-1,2-dihydro-3H-pyrazolo[3,4-d]pyrimidin-3-one or a salt thereof, which are useful in the field of treatment of various cancers as a kinase inhibitor, especially as a Weel kinase inhibitor.
    Type: Grant
    Filed: April 22, 2008
    Date of Patent: June 12, 2012
    Assignee: Merck Sharp & Dohme Corp.
    Inventors: Masashi Kawasaki, Hiroo Mizuno, Toshihiro Sakamoto, Kimimasa Suzuki, Arlene E. McKeown
  • Publication number: 20120132908
    Abstract: In a thin film transistor, a gate insulating layer is formed on a gate electrode formed on an insulating substrate. Formed on the gate insulating layer is a semiconductor layer. Formed on the semiconductor layer are a source electrode and a drain electrode. A protective layer covers them, so that the semiconductor layer is blocked from an atmosphere. The semiconductor layer (active layer) is made of, e.g., a semiconductor containing polycrystalline ZnO to which, e.g., a group V element is added. This allows practical use of a semiconductor device which has an active layer made of zinc oxide and which includes an protective layer for blocking the active layer from an atmosphere.
    Type: Application
    Filed: February 3, 2012
    Publication date: May 31, 2012
    Applicants: SHARP KABUSHIKI KAISHA
    Inventors: Toshinori Sugihara, Hideo Ohno, Masashi Kawasaki
  • Patent number: 8173487
    Abstract: A thin-film transistor (1) of the present invention includes an insulating substrate (2), a gate electrode (3) which has a predetermined shape and is formed on the insulating substrate (2), a gate insulating film (4) formed on the gate electrode (3), and a semiconductor layer (5) which is polycrystalline ZnO and is formed on the gate insulating film (4). The semiconductor layer (5) is immersed in a solution in which impurities are dissolved so that the impurities are selectively added to a grain boundary part of the polycrystalline ZnO film. Subsequently, a source electrode (6) and a drain electrode (7) are formed so as to have a predetermined shape. Next, a protection layer (8) is formed on the source electrode (6) and the drain electrode (7). Thus, a thin-film transistor which has a good subthreshold characteristic and has a zinc oxide film as a base of an active layer can be realized.
    Type: Grant
    Filed: April 1, 2008
    Date of Patent: May 8, 2012
    Assignees: Sharp Kabushiki Kaisha, Tohoku University
    Inventors: Masao Urayama, Masashi Kawasaki, Hideo Ohno
  • Patent number: 8093589
    Abstract: In a thin film transistor (1), a gate insulating layer (4) is formed on a gate electrode (3) formed on an insulating substrate (2). Formed on the gate insulating layer (4) is a semiconductor layer (5). Formed on the semiconductor layer (5) are a source electrode (6) and a drain electrode (7). A protective layer (8) covers them, so that the semiconductor layer (5) is blocked from an atmosphere. The semiconductor layer (5) (active layer) is made of, e.g., a semiconductor containing polycrystalline ZnO to which, e.g., a group V element is added. This allows practical use of a semiconductor device which has an active layer made of zinc oxide and which includes an protective layer for blocking the active layer from an atmosphere.
    Type: Grant
    Filed: June 14, 2004
    Date of Patent: January 10, 2012
    Assignees: Sharp Kabushiki Kaisha
    Inventors: Toshinori Sugihara, Hideo Ohno, Masashi Kawasaki
  • Publication number: 20110305890
    Abstract: Provided is a method of evaluating properties of ferrite which can continuously measure change in magnetic properties accompanying change in composition of the ferrite merely by preparing one specimen. A composition gradient ferrite thin film constituted of a plurality of composition gradient ferrite layers which are formed by inclining component composition in the horizontal direction is formed on a single crystal substrate having light transmitting property using a thin film forming method, and a magneto-optical effect is continuously measured along the composition gradient direction of the ferrite thin film whereby change in magnetic properties accompanying a change in composition of the ferrite is continuously measured.
    Type: Application
    Filed: March 12, 2010
    Publication date: December 15, 2011
    Applicants: Tohoku University, JFE Mineral Company, Ltd.
    Inventors: Yosuke Iwasaki, Masashi Kawasaki, Tomoteru Fukumura
  • Publication number: 20110253204
    Abstract: A solar cell 1 has a p-n junction structure between a first solid material layer 3 comprising an insulator or a semiconductor and a second solid material layer 5 comprising an insulator or a semiconductor of a type different from the type of the first solid material layer 3, in which structure a Mott insulator or a Mott semiconductor is used as a solid material of at least one of the layers.
    Type: Application
    Filed: April 7, 2011
    Publication date: October 20, 2011
    Inventors: Wataru Koshibae, Masao Nakamura, Masashi Kawasaki, Naoto Nagaosa, Yasujiro Taguchi, Yoshinori Tokura, Nobuo Furukawa
  • Publication number: 20110175090
    Abstract: In a thin film transistor, a gate insulating layer is formed on a gate electrode formed on an insulating substrate. Formed on the gate insulating layer is a semiconductor layer. Formed on the semiconductor layer are a source electrode and a drain electrode. A protective layer covers them, so that the semiconductor layer is blocked from an atmosphere. The semiconductor layer (active layer) is made of, e.g., a semiconductor containing polycrystalline ZnO to which, e.g., a group V element is added. This allows practical use of a semiconductor device which has an active layer made of zinc oxide and which includes an protective layer for blocking the active layer from an atmosphere.
    Type: Application
    Filed: March 28, 2011
    Publication date: July 21, 2011
    Applicants: Sharp Kabushiki Kaisha, Hideo Ohno, Masashi Kawasaki
    Inventors: Toshinori Sugihara, Hideo Ohno, Masashi Kawasaki
  • Publication number: 20110114937
    Abstract: Provided are: a p-type MgZnO-based thin film that functions as a p-type; and a semiconductor light emitting device that includes the p-type MgZnO-based thin film. A p-type MgxZn1-xO-based thin film (1) is formed on a substrate (2) made of a ZnO-based semiconductor. The p-type MgxZn1-xO-based thin film (1) is composed so that X as a ratio of Mg with respect to Zn therein can be 0?X<1, preferably 0?X?0.5. In the p-type MgZnO thin film (1), nitrogen as p-type impurities which become an acceptor is contained at a concentration of approximately 5.0×1018 cm?3 or more. The p-type MgZnO thin film (1) is composed so that n-type impurities made of a group IV element such as silicon that becomes a donor can have a concentration of approximately 1.0×1017 cm?3 or less. The p-type MgZnO thin film (1) is composed so that n-type impurities made of a group III element such as boron and aluminum which become a donor can have a concentration of approximately 1.0×1016 cm?3 or less.
    Type: Application
    Filed: August 1, 2008
    Publication date: May 19, 2011
    Applicant: ROHM CO., LTD.
    Inventors: Ken Nakahara, Hiroyuki Yuji, Kentaro Tamura, Shunsuke Akasaka, Masashi Kawasaki, Akira Ohtomo, Atsushi Tsukazaki
  • Publication number: 20110114938
    Abstract: Provided is a ZnO-based semiconductor device in which, in the case of forming a laminate including an acceptor-doped layer made of a ZnO-based semiconductor, the properties of a film can be stabilized by preventing deterioration of the flatness of the acceptor-doped layer or a layer after the acceptor-doped layer and an increase of crystal defect in the layer, without lowering the concentration of an acceptor element.
    Type: Application
    Filed: February 20, 2009
    Publication date: May 19, 2011
    Applicant: Rohm Co., Ltd.
    Inventors: Ken Nakahara, Kentaro Tamura, Hiroyuki Yuji, Shunsuke Akasaka, Masashi Kawasaki, Akira Ohtomo, Atsushi Tsukazaki
  • Patent number: 7932505
    Abstract: Provided is a material composition which allows a nonvolatile memory element made of a perovskite-type transition metal oxide having the CER effect to be formed of three elements, which comprises an electric conductor having a shallow work function or a small electronegativity, such as Ti, as an electrode and a rare earth-copper oxide comprising one type of rare earth element, copper and oxygen, such as La2CuO4, as a material constituting a heterojunction with the electric conductor.
    Type: Grant
    Filed: March 23, 2006
    Date of Patent: April 26, 2011
    Assignee: National Institute of Advanced Industrial Science and Technology
    Inventors: Akihito Sawa, Takeshi Fujii, Masashi Kawasaki, Yoshinori Tokura
  • Publication number: 20110092520
    Abstract: The present invention relates to a process for producing a hydrate of 3-(2,6-dichlorophenyl)-4-imino-7-[(2?-methyl-2?,3?-dihydro-1?H-spiro[cyclopropane-1,4?-isoquinolin]-7?-yl)amino]-3,4-dihydropyrimido[4,5-d]pyrimidin-2(1H)-one (Compound A) or of a pharmaceutically acceptable salt of Compound A and a crystalline form of Compound A or of a pharmaceutically acceptable salt of Compound A, which are useful in the field of treatment of various cancers as a kinase inhibitor, especially as a Weel kinase inhibitor.
    Type: Application
    Filed: June 2, 2009
    Publication date: April 21, 2011
    Inventors: Shuntaro Furukawa, Taketo Ikeno, Shinji Kato, Masashi Kawasaki, Hisaki Kojima, Wataru Minagawa, Naotaka Sawada, Fuyuki Yamamoto, Sachin Lohani, Yaling Wang
  • Publication number: 20110037067
    Abstract: Provided is a ZnO-based semiconductor device in which flat ZnO-based semiconductor layers can be grown on a MgZnO substrate having a laminate-side principal surface including a C-plane. With an MgxZn1-xO substrate (0?x<1) with a principal surface including a C-plane, the principal surface is formed so that an angle ?m made between a c-axis of substrate's crystal axes and a projection axis obtained by projecting a normal line to the principal surface onto a plane defined by an m-axis and the c-axis of the substrate's crystal axes can be within a range of 0<?m?3. On the principal surface thus formed, ZnO-based semiconductor layers 2 to 5 are grown epitaxially. A p electrode 8 is formed on the ZnO-based semiconductor layer 5, and an n electrode 9 is formed on the bottom side of the MgxZn1-xO substrate 1. In this way, steps are formed on the surface of the MgxZn1-xO substrate 1, while being arranged regularly in the m-axis direction.
    Type: Application
    Filed: November 20, 2008
    Publication date: February 17, 2011
    Inventors: Ken Nakahara, Masashi Kawasaki, Akira Ohtomo, Atsushi Tsukazaki
  • Publication number: 20110033718
    Abstract: Provided is a ZnO-based thin film which is doped with p-type impurities and which can be used for various devices. An MgxZn1-xO film (0?x?0.5) is formed on top of a substrate so as to have an acceptor concentration of a p-type dopant that is 5×1020 cm?3 or less. An acceptor concentration exceeding 5×1020 cm?3 results in the formation of a mixed crystal of the p-type impurities and the ZnO crystal as the base material. Accordingly, no high-quality ZnO-based thin film doped to be p-type can be obtained. This fact is testified by the change observed in the ZnO secondary ion intensity.
    Type: Application
    Filed: April 2, 2008
    Publication date: February 10, 2011
    Applicant: ROHM CO., LTD.
    Inventors: Ken Nakahara, Hiroyuki Yuji, Kentaro Tamura, Shunsuke Akasaka, Masashi Kawasaki, Akira Ohtomo, Atsushi Tsukazaki
  • Publication number: 20100323160
    Abstract: Provided is a ZnO-based thin film for growing a flat film when the ZnO-based thin film is formed on a substrate. In FIG. 1(a), a ZnO-based film 2 is formed on a ZnO-based substrate 1. Meanwhile, in FIG. 1(b), a ZnO-based laminated body 10 that is a laminated body of ZnO-based thin films is formed on the ZnO-based substrate 1. The ZnO-based laminated body 10 is the laminated body in which multiple ZnO-based thin films including a ZnO-based thin film 3, a ZnO-based thin film 4 and the like are laminated. When forming the ZnO-based thin film 2 or the ZnO-based laminated body 10, the film or the body is formed at a growth temperature of 750° C. or above, or alternatively, a step structure on a surface of the film is formed into a predetermined structure such that roughness on the surface of the film is in a predetermined range.
    Type: Application
    Filed: February 6, 2008
    Publication date: December 23, 2010
    Applicant: ROHM CO., LTD.
    Inventors: Ken Nakahara, Hiroyuki Yuji, Kentaro Tamura, Shunsuke Akasaka, Masashi Kawasaki, Akira Ohtomo, Atsushi Tsukazaki