Patents by Inventor Masaya Hagiwara

Masaya Hagiwara has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150270039
    Abstract: The invention provides a high-performance permanent magnet. The permanent magnet has a composition that is expressed by a composition formula RpFeqMrCutCo100-p-q-r-t, where R is at least one element selected from a rare earth element, M is at least one element selected from the group consisting of Zr, Ti, and Hf, p is a number satisfying 10.8?p?12.5 atomic percent, q is a number satisfying 25?q?40 atomic percent, r is a number satisfying 0.88?r?4.5 atomic percent, and t is a number satisfying 3.5?t?13.5 atomic percent. The permanent magnet also has a metallic structure that includes a main phase having a Th2Zn17 crystal phase, and a Cu-M rich phase having a higher Cu concentration and a higher M concentration than the main phase.
    Type: Application
    Filed: March 3, 2015
    Publication date: September 24, 2015
    Inventors: Yosuke Horiuchi, Shinya Sakurada, Keiko Okamoto, Masaya Hagiwara, Tsuyoshi Kobayashi, Masaki Endo, Tadahiko Kobayashi, Naoyuki Sanada
  • Publication number: 20150270040
    Abstract: A high performance permanent magnet is provided. The permanent magnet includes a composition represented by a composition formula: RpFeqMrCutCo100-p-q-t, and a metallic structure including cell phases having a Th2Zn17 crystal phase and Cu-rich phases having higher Cu concentration than the cell phases. An average diameter of the cell phases is 220 nm or less, and in a numeric value range from a minimum diameter to a maximum diameter of the cell phases, a ratio of a number of cell phases having a diameter in a numeric value range of less than upper 20% from the maximum diameter is 20% or less of all the cell phases.
    Type: Application
    Filed: March 18, 2015
    Publication date: September 24, 2015
    Inventors: Yosuke Horiuchi, Shinya Sakurada, Keiko Okamoto, Masaya Hagiwara, Tsuyoshi Kobayashi, Masaki Endo, Tadahiko Kobayashi, Naoyuki Sanada
  • Publication number: 20150270038
    Abstract: A high-performance permanent magnet is provided. A permanent magnet has a composition expressed by a composition formula: RpFeqMrCutCo100-p-q-r-t. The permanent magnet also has a metallic structure including a main phase and a grain boundary phase arranged between crystal grains of the main phase. The crystal grains satisfy a formula: 0.001?|(100/p1max)?(100/p1min)|?1.2, where p1 is a concentration of the R element in each of the crystal grains (atomic percent), p1max is a maximum value of the p1 in all the crystal grains, and p1min is a minimum value of the p1 in all the crystal grains.
    Type: Application
    Filed: March 3, 2015
    Publication date: September 24, 2015
    Inventors: Masaki Endo, Shinya Sakurada, Yosuke Horiuchi, Naoyuki Sanada, Masaya Hagiwara, Tadahiko Kobayashi, Tsuyoshi Kobayashi
  • Publication number: 20150228385
    Abstract: A permanent magnet includes: a composition expressed by a composition formula: RpFeqMrCutCo100-p-q-r-t (R is at least one element selected from rare-earth elements, M is at least one element selected from Zr, Ti, and Hf, 10.5?p?12.5 at %, 23?q?40 at %, 0.88?r?4.5 at %, 4.5?t?10.7 at %); and a metal structure containing a Th2Zn17 crystal phase and a Cu-rich phase having a Cu concentration higher than that of the Th2Zn17 crystal phase. In a cross section including a c-axis of the Th2Zn17 crystal phase, a number of intersections of the Cu-rich phases existing in an area of 1 ?m square is 10 or more.
    Type: Application
    Filed: March 18, 2015
    Publication date: August 13, 2015
    Inventors: Yosuke Horiuchi, Shinya Sakurada, Keiko Okamoto, Masaya Hagiwara, Tsuyoshi Kobayashi, Masaki Endo, Tadahiko Kobayashi
  • Publication number: 20150221422
    Abstract: A permanent magnet of an embodiment includes: a composition represented by a composition formula: R(FepMqCurCo1-p-q-r)z, where R is at least one element selected from rare-earth elements, M is at least one element selected from Zr, Ti, and Hf, and relations of 0.3?p?0.4, 0.01?q?0.05, 0.01?r?0.1, and 7?z?8.5 (atomic ratio) are satisfied; and a structure including a cell phase having a Th2Zn17 crystal phase, and a cell wall phase existing to surround the cell phase. An average magnetization of the cell wall phase is 0.2 T or less.
    Type: Application
    Filed: March 18, 2015
    Publication date: August 6, 2015
    Inventors: Shinya Sakurada, Yosuke Horiuchi, Keiko Okamoto, Masaya Hagiwara, Tsuyoshi Kobayashi, Masaki Endo, Tadahiko Kobayashi
  • Publication number: 20150194246
    Abstract: A permanent magnet includes: a composition expressed by a composition formula: RpFeqMrCutCo100-p-q-r-t (R is at least one element selected from rare-earth elements, M is at least one element selected from Zr, Ti, and Hf, 10.5?p?12.5 at %, 23?q?40 at %, 0.88?r?4.5 at %, 4.5?t?10.7 at %); and a metal structure containing a cell phase having a Th2Zn17 crystal phase, a cell wall phase, an M-rich platelet phase formed vertically to a c-axis of the Th2Zn17 crystal phase, and a Cu-rich platelet phase formed along the M-rich platelet phase.
    Type: Application
    Filed: March 18, 2015
    Publication date: July 9, 2015
    Inventors: Yosuke Horiuchi, Shinya Sakurada, Keiko Okamoto, Masaya Hagiwara, Tsuyoshi Kobayashi, Masaki Endo, Tadahiko Kobayashi
  • Publication number: 20150143952
    Abstract: In one embodiment, a permanent magnet includes a sintered compact having a composition represented by the composition formula: RpFeqMrCusCo100-p-q-r-s (where R is at least one element selected from rare earth elements, M is at least one element selected from Zr, Ti, and Hf, p is 10.5 atomic % or more and 12.5 atomic % or less, q is 24 atomic % or more and 40 atomic % or less, r is 0.88 atomic % or more and 4.5 atomic % or less, and s is 3.5 atomic % or more and 10.7 atomic % or less. The sintered compact has a structure having crystal grains constituted of a main phase including a Th2Zn17 crystal phase, and a crystal grain boundary. In the structure of the sintered compact, an average grain diameter of the crystal grains is 25 micrometer or more, and a volume fraction of the crystal grain boundary is 14% or less.
    Type: Application
    Filed: February 2, 2015
    Publication date: May 28, 2015
    Inventors: Yosuke Horiuchi, Shinya Sakurada, Keiko Okamoto, Masaya Hagiwara, Tsuyoshi Kobayashi, Masaki Endo, Tadahiko Kobayashi, Kazuomi Yoshima
  • Publication number: 20150147228
    Abstract: In one embodiment, a permanent magnet has a composition represented by a composition formula: RpFeqMrCusCo100-p-q-r-s, where R is a rare earth element, M is at least one element selected from Zr, Ti, and Hf, p is 8.0 atomic % or more and 13.5 atomic % or less, q is 25 atomic % or more and 40 atomic % or less, r is 0.88 atomic % or more and 7.2 atomic % or less, and s is 3.5 atomic % or more and 13.5 atomic % or less, and a metallic structure including a cell phase having a Th2Zn17 crystal phase, a cell wall phase, and a platelet phase existing along a c plane of the Th2Zn17 crystal phase. An average thickness of the platelet phase is in a range of from 2.5 nm to 20 nm.
    Type: Application
    Filed: February 2, 2015
    Publication date: May 28, 2015
    Inventors: Masaki Endo, Shinya Sakurada, Yosuke Horiuchi, Tsuyoshi Kobayashi, Keiko Okamoto, Masaya Hagiwara
  • Publication number: 20140139305
    Abstract: In one embodiment, a permanent magnet includes a sintered compact having a composition expressed by a composition formula: Rp1Feq1Mr1Cus1Co100-p1-q1-r1-s1 (R is a rare-earth element, M is at least one element selected from Zr, Ti, and Hf, 10?p1?13.3 at %, 25?q1?40.0 at %, 0.88?r1?5.4 at %, and 3.5?s1?13.5 at %). The sintered compact includes crystal grains each composed of a main phase including a Th2Zn17 crystal phase, and a Cu-rich phase having a composition with a high Cu concentration and an average thickness of 0.05 ?m or more and 2 ?m or less.
    Type: Application
    Filed: October 31, 2013
    Publication date: May 22, 2014
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Yosuke Horiuchi, Shinya Sakurada, Keiko Okamoto, Masaya Hagiwara, Tsuyoshi Kobayashi, Masaki Endo, Tadahiko Kobayashi
  • Publication number: 20140139063
    Abstract: In one embodiment, a permanent magnet includes a sintered compact including: a composition expressed by a composition formula: RpFeqMrCusCo100-p-q-r-s (R is at least one element selected from rare-earth elements, M is at least one element selected from Zr, Ti, and Hf, 10?p?13.3 at %, 25?q?40 at %, 0.87?r?5.4 at %, and 3.5?s?13.5 at %); and a metallic structure having a main phase including a Th2Zn17 crystal phase, and an R-M-rich phase containing the element R whose concentration is 1.2 times or more an R concentration in the main phase and the element M whose concentration is 1.2 times or more an M concentration in the main phase. A volume fraction of the R-M-rich phase in the metallic structure is from 0.2% to 15%.
    Type: Application
    Filed: October 31, 2013
    Publication date: May 22, 2014
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Yosuke Horiuchi, Shinya Sakurada, Keiko Okamoto, Masaya Hagiwara, Tsuyoshi Kobayashi, Masaki Endo, Tadahiko Kobayashi
  • Publication number: 20140139064
    Abstract: In one embodiment, a permanent magnet includes: a composition expressed by RpFeqMrCusCo100-p-q-r-s (R is a rare-earth element, M is at least one element selected from Zr, Ti, and Hf, 10?p?13.5 at %, 25?q?40 at %, 1.35?r?1.75 at %, and 0.88?s?13.5 at %); and a metallic structure including Th2Zn17 crystal phases each having a Fe concentration of 25 at % or more, and Cu-rich crystal phases each having a Cu concentration of from 25 at % to 70 at %. An average thickness of the Cu-rich crystal phases is 20 nm or less, and an average distance between the Cu-rich crystal phases is 200 nm or less.
    Type: Application
    Filed: November 11, 2013
    Publication date: May 22, 2014
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Yosuke Horiuchi, Shinya Sakurada, Tsuyoshi Kobayashi, Keiko Okamoto, Masaya Hagiwara, Masaki Endo
  • Publication number: 20140062630
    Abstract: According to one embodiment, a permanent magnet is provided with a sintered body having a composition represented by R(FepMqCurCo1-p-q-r)zOw (where, R is at least one element selected from rare-earth elements, M is at least one element selected from Ti, Zr and Hf, and p, q, r, z and w are numbers satisfying 0.25?p?0.6, 0.005?q?0.1, 0.01?r?0.1, 4?z?9 and 0.005?w?0.6 in terms of atomic ratio). The sintered body has therein aggregates of oxides containing the element R dispersed substantially uniformly.
    Type: Application
    Filed: September 24, 2013
    Publication date: March 6, 2014
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Yosuke HORIUCHI, Shinya Sakurada, Keiko Okamoto, Masaya Hagiwara
  • Patent number: 8568539
    Abstract: According to one embodiment, a permanent magnet is provided with a sintered body having a composition represented by R(FepMqCurCo1-p-q-r)zOw (where, R is at least one element selected from rare-earth elements, M is at least one element selected from Ti, Zr and Hf, and p, q, r, z and w are numbers satisfying 0.25?p?0.6, 0.005?q?0.1, 0.01?r?0.1, 4?z?9 and 0.005?w?0.6 in terms of atomic ratio). The sintered body has therein aggregates of oxides containing the element R dispersed substantially uniformly.
    Type: Grant
    Filed: March 25, 2011
    Date of Patent: October 29, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yosuke Horiuchi, Shinya Sakurada, Keiko Okamoto, Masaya Hagiwara
  • Publication number: 20130257209
    Abstract: In one embodiment, a permanent magnet includes a magnet main body and a surface portion provided on a surface of the magnet main body. The magnet main body has a composition expressed by a composition formula 1: R(Fep1Mq1Cur1Co1-p1-q1-r1)z1. The surface portion has a composition expressed by a composition formula 2: R(Fep2Mq2Cur2Co1-p2-q2-r2)z2. In the composition formulas 1 and 2, R is at least one element selected from rare earth elements, M is at least one element selected from Ti, Zr and Hf, p1 and p2 are 0.25 to 0.45, q1 and q2 are 0.01 to 0.05, r1 and r2 are 0.01 to 0.1, z1 is 6 to 9, and z2 satisfies 0.8?z2/z1?0.995.
    Type: Application
    Filed: March 13, 2013
    Publication date: October 3, 2013
    Inventors: Shinya Sakurada, Yosuke Horiuchi, Tsuyoshi Kobayashi, Keiko Okamoto, Masaya Hagiwara, Makoto Matsushita, Masaki Endo
  • Publication number: 20130241682
    Abstract: In one embodiment, a permanent magnet includes: a composition expressed by RpFeqMrCusCo100-p-q-r-s (R is a rare-earth element, M is at least one element selected from Zr, Ti, and Hf, 10.8?p?13.5 at %, 28?q?40 at %, 0.88?r?7.2 at %, and 3.5?s?13.5 at %); and a metallic structure including a cell phase having a Th2Zn17 crystal phase, and a cell wall phase. A Cu concentration in the cell wall phase is in a range from 30 at % to 70 at %.
    Type: Application
    Filed: January 23, 2013
    Publication date: September 19, 2013
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Yosuke Horiuchi, Shinya Sakurada, Tsuyoshi Kobayashi, Keiko Okamoto, Masaya Hagiwara
  • Publication number: 20130241333
    Abstract: In an embodiment, a permanent magnet includes a composition represented by a composition formula: R(FepMqCur(Co1-sAs)1-p-q-r)z, where, R is at least one element selected from rare earth elements, M is at least one element selected from Ti, Zr, and Hf, A is at least one element selected from Ni, V, Cr, Mn, Al, Si, Ga, Nb, Ta, and W, 0.05?p?0.6, 0.005?q?0.1, 0.01?r?0.15, 0?s?0.2, and 4?z?9, and a two-phase structure of a Th2Zn17 crystal phase and a copper-rich phase. In a cross-section of the permanent magnet containing a crystal c axis of the Th2Zn17 crystal phase, an average distance between the copper-rich phases is 120 nm or less.
    Type: Application
    Filed: September 14, 2012
    Publication date: September 19, 2013
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Yosuke HORIUCHI, Shinya SAKURADA, Keiko OKAMOTO, Masaya HAGIWARA
  • Publication number: 20130241681
    Abstract: In one embodiment, a permanent magnet includes a composition expressed by RpFeqMrCusCo100-p-q-r-s (R is a rare-earth element, M is at least one element selected from Zr, Ti, and Hf, 10?p?13.5 at %, 28?q?40 at %, 0.88?r?7.2 at %, and 3.5?s?13.5 at %), and a metallic structure including a cell phase having a Th2Zn17 crystal phase, and a cell wall phase. A Fe concentration (C1) in the cell phase is in a range from 28 at % to 45 at %, and a difference (C1?C2) between the Fe concentration (C1) in the cell phase and a Fe concentration (C2) in the cell wall phase is larger than 10 at %.
    Type: Application
    Filed: January 18, 2013
    Publication date: September 19, 2013
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Yosuke Horiuchi, Shinya Sakurada, Tsuyoshi Kobayashi, Keiko Okamoto, Masaya Hagiwara
  • Publication number: 20130082559
    Abstract: In one embodiment, a permanent magnet includes a composition represented by R(FepMqCur(Co1-p-q-r)z, (R: rare earth element, M: at least one element selected from Ti, Zr and Hf, 0.3<p?0.45, 0.01?q?0.05, 0.01?r?0.1, 5.6?z?9), and a metallic structure including a Th2Zn17 crystal phase, a grain boundary phase and a platelet phase. A spatial distribution of Cu concentration in the grain boundary phase is set to 5 or less in standard deviation.
    Type: Application
    Filed: March 19, 2012
    Publication date: April 4, 2013
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Masaya Hagiwara, Shinya SAKURADA, Yosuke HORIUCHI, Tsuyoshi KOBAYASHI, Keiko OKAMOTO
  • Publication number: 20130076184
    Abstract: In one embodiment, a permanent magnet includes a composition represented by RpFeqMrCusCo100-p-q-r-s (R: rare earth element, M: at least one element selected from Zr, Ti and Hf, 10?p?13.5 atomic %, 28?q?40 atomic %, 0.88?r?7.2 atomic %, 4?s?13.5 atomic %), and a metallic structure in which a composition region having an Fe concentration of 28 mol % or more is a main phase. A Cu concentration in the main phase is 5 mol % or more.
    Type: Application
    Filed: March 19, 2012
    Publication date: March 28, 2013
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Yosuke Horiuchi, Shinya Sakurada, Tsuyoshi Kobayashi, Keiko Okamoto, Masaya Hagiwara
  • Publication number: 20120242180
    Abstract: In an embodiment, a permanent magnet includes a composition of RpFeqZrrMsCutCo100-p-q-r-s-t (R: rare-earth element, M: at least one element selected from Ti and Hf, 10?p?15, 24?q?40.5, 1.5?r?4.5, 0?s?3, 1.5?r+s?4.5, and 0.8?t?13.5 (atomic %)). The permanent magnet has a texture including a main phase which is formed of a Th2Zn17 type crystal phase, and a grain boundary phase which has a crystal phase having a Zr concentration of from 4 atomic % or more to 35 atomic % or less.
    Type: Application
    Filed: September 19, 2011
    Publication date: September 27, 2012
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Yosuke Horiuchi, Shinya Sakurada, Tsuyoshi Kobayashi, Keiko Okamoto, Masaya Hagiwara