Patents by Inventor Masaya Hagiwara

Masaya Hagiwara has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8211246
    Abstract: In one embodiment, a permanent magnet has a composition represented by (Sm1-xRx)(FepMqCurCo1-p-q-r)z, where R is at least one element selected from Nd and Pr, M is at least one element selected from Ti, Zr and Hf, and 0.22?p?0.45, 0.005?q?0.05, 0.01 ?r?0.1, 0.05?x<0.5, and 7?z?9. The permanent magnet includes a Th2Zn17 crystal phase as a main phase, and a ratio of diffraction peak intensity I(113) from a (113) plane of the Th2Zn17 crystal phase in powder X-ray diffraction to diffraction peak intensity I(300) from a (300) plane in powder X-ray diffraction is in a range of 0.9?I(113)/I(300)?1.7.
    Type: Grant
    Filed: March 16, 2011
    Date of Patent: July 3, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Masaya Hagiwara, Shinya Sakurada, Yosuke Horiuchi, Keiko Okamoto, Tsuyoshi Kobayashi, Shiori Kaji
  • Publication number: 20120074804
    Abstract: In an embodiment, a permanent magnet includes a composition of R (FepMqCur(Co1-sAs)1-p-q-r)z (R: rare earth element, M: Ti, Zr, Hf, A: Ni, V, Cr, Mn, Al, Si, Ga, Nb, Ta, W, 0.05?p 0.6, 0.005?q?0.1, 0.01?r?0.15, 0?s?0.2, 4?z?9). The permanent magnet includes a two-phase structure of a Th2Zn17 crystal phase and a copper-rich phase. An average interval between the copper-rich phases in a cross section including a crystal c axis of the Th2Zn17 crystal phase is in a range of over 120 nm and less than 500 nm.
    Type: Application
    Filed: March 15, 2011
    Publication date: March 29, 2012
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Yosuke Horiuchi, Shinya Sakurada, Keiko Okamoto, Masaya Hagiwara
  • Publication number: 20120075046
    Abstract: In one embodiment, a permanent magnet has a composition represented by (Sm1-xRx)(FepMqCurCo1·p·q·r)z, where R is at least one element selected from Nd and Pr, M is at least one element selected from Ti, Zr and Hf, and 0.22?p?0.45, 0.005?q?0.05, 0.01?r?0.1, 0.05?x<0.5, and 7?z?9. The permanent magnet includes a Th2Zn17 crystal phase as a main phase, and a ratio of diffraction peak intensity I(113) from a (113) plane of the Th2Zn17 crystal phase in powder X-ray diffraction to diffraction peak intensity I(300) from a (300) plane in powder X-ray diffraction is in a range of 0.9?I(113)/I(300)?1.7.
    Type: Application
    Filed: March 16, 2011
    Publication date: March 29, 2012
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Masaya Hagiwara, Shinya Sakurada, Yosuke Horiuchi, Keiko Okamoto, Tsuyoshi Kobayashi, Shiori Kaji
  • Publication number: 20110241810
    Abstract: According to one embodiment, a permanent magnet is provided with a sintered body having a composition represented by R(FepMqCurCo1-p-q-r)zOw (where, R is at least one element selected from rare-earth elements, M is at least one element selected from Ti, Zr and Hf, and p, q, r, z and w are numbers satisfying 0.25?p?0.6, 0.005?q?0.1, 0.01?r?0.1, 4?z?9 and 0.005?w?0.6 in terms of atomic ratio). The sintered body has therein aggregates of oxides containing the element R dispersed substantially uniformly.
    Type: Application
    Filed: March 25, 2011
    Publication date: October 6, 2011
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Yosuke HORIUCHI, Shinya Sakurada, Keiko Okamoto, Masaya Hagiwara