Patents by Inventor Mathew J. Manusharow

Mathew J. Manusharow has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200111745
    Abstract: Embodiments that allow both high density and low density interconnection between microelectronic die and motherboard via Direct Chip Attach (DCA) are described. In some embodiments, microelectronic die have a high density interconnect with a small bump pitch located along one edge and a lower density connection region with a larger bump pitch located in other regions of the die. The high density interconnect regions between die are interconnected using an interconnecting bridge made out of a material that can support high density interconnect manufactured into it, such as silicon. The lower density connection regions are used to attach interconnected die directly to a board using DCA. The high density interconnect can utilize current Controlled Collapsed Chip Connection (C4) spacing when interconnecting die with an interconnecting bridge, while allowing much larger spacing on circuit boards.
    Type: Application
    Filed: October 14, 2019
    Publication date: April 9, 2020
    Inventors: Mihir K. Roy, Mathew J. Manusharow
  • Publication number: 20200066641
    Abstract: Integrated circuit (IC) chip die to die channel interconnect configurations (systems and methods for their manufacture) may improve signaling to and through a single ended bus data signal communication channel by including on-die induction structures; on-die interconnect features; on-package first level die bump designs and ground webbing structures; on-package high speed horizontal data signal transmission lines; on-package vertical data signal transmission interconnects; and/or on-package electro-optical (EO) connectors in various die to die interconnect configurations for improved signal connections and transmission through a data signal channel extending through one or more semiconductor device package devices, that may include an electro-optical (EO) connector upon which at least one package device may be mounted, and/or be semiconductor device packages in a package-on-package configuration.
    Type: Application
    Filed: July 2, 2016
    Publication date: February 27, 2020
    Inventors: Kemal AYGUN, Richard J. DISCHLER, Jeff C. MORRISS, Zhiguo QIAN, Wilfred GOMES, Yu Amos ZHANG, Ram S. VISWANATH, Rajasekaran SWAMINATHAN, Sriram SRINIVASAN, Yidnekachew S. MEKONNEN, Sanka GANESAN, Eduard ROYTMAN, Mathew J. MANUSHAROW
  • Publication number: 20200051916
    Abstract: An embedded multi-die interconnect bridge (EMIB) die is configured with power delivery to the center of the EMIB die and the power is distributed to two dice that are interconnected across the EMIB die.
    Type: Application
    Filed: October 21, 2019
    Publication date: February 13, 2020
    Inventors: Andrew COLLINS, Debendra MALLIK, Mathew J. MANUSHAROW, Jianyong XIE
  • Patent number: 10522455
    Abstract: Embodiments of the present disclosure are directed towards techniques and configurations for designing and assembling a die capable of being adapted to a number of different packaging configurations. In one embodiment an integrated circuit (IC) die may include a semiconductor substrate. The die may also include an electrically insulative material disposed on the semiconductor substrate; a plurality of electrical routing features disposed in the electrically insulative material to route electrical signals through the electrically insulative material; and a plurality of metal features disposed in a surface of the electrically insulative material. In embodiments, the plurality of metal features may be electrically coupled with the plurality of electrical routing features. In addition, the plurality of metal features may have an input/output (I/O) density designed to enable the die to be integrated with a plurality of different package configurations. Other embodiments may be described and/or claimed.
    Type: Grant
    Filed: January 31, 2019
    Date of Patent: December 31, 2019
    Assignee: INTEL CORPORATION
    Inventors: Mathew J. Manusharow, Dustin P. Wood, Debendra Mallik
  • Patent number: 10490503
    Abstract: An embedded multi-die interconnect bridge (EMIB) die is configured with power delivery to the center of the EMIB die and the power is distributed to two dice that are interconnected across the EMIB die.
    Type: Grant
    Filed: March 27, 2018
    Date of Patent: November 26, 2019
    Assignee: Intel Corporation
    Inventors: Andrew Collins, Debendra Mallik, Mathew J Manusharow, Jianyong Xie
  • Publication number: 20190355636
    Abstract: Embodiments of the invention include an electrical package and methods of forming the package. In one embodiment, the electrical package may include a first package layer. A plurality of signal lines with a first thickness may be formed on the first package layer. Additionally, a power plane with a second thickness may be formed on the first package layer. According to an embodiment, the second thickness is greater than the first thickness. Embodiments of the invention may form the power plane with a lithographic patterning and deposition process that is different than the lithographic patterning and deposition process used to form the plurality of signal lines. In an embodiment, the power plane may be formed concurrently with vias that electrically couple the signal lines to the next routing layer.
    Type: Application
    Filed: July 30, 2019
    Publication date: November 21, 2019
    Inventors: Krishna Bharath, Mathew J. Manusharow, Adel A. Elsherbini, Mihir K. Roy, Aleksandar Aleksov, Yidnekachew S. Mekonnen, Javier Soto Gonzalez, Feras Eid, Suddhasattwa Nad, Meizi Jiao
  • Patent number: 10453795
    Abstract: A ground isolation webbing structure package includes a top level with an upper interconnect layer having upper ground contacts, upper data signal contacts, and a conductive material upper ground webbing structure that is connected to the upper ground contacts and surrounds the upper data signal contacts. The upper contacts may be formed over and connected to via contacts or traces of a lower layer of the same interconnect level. The via contacts of the lower layer may be connected to upper contacts of a second interconnect level which may also have such webbing. There may also be at least a third interconnect level having such webbing. The webbing structure electrically isolates and reduces cross talk between the signal contacts, thus providing higher frequency and more accurate data signal transfer between devices such as integrated circuit (IC) chips attached to a package.
    Type: Grant
    Filed: December 26, 2015
    Date of Patent: October 22, 2019
    Assignee: Intel Corporation
    Inventors: Yu Amos Zhang, Mathew J. Manusharow, Kemal Aygun, Mohiuddin Mazumder
  • Patent number: 10446499
    Abstract: Embodiments that allow both high density and low density interconnection between microelectronic die and motherboard via Direct Chip Attach (DCA) are described. In some embodiments, microelectronic die have a high density interconnect with a small bump pitch located along one edge and a lower density connection region with a larger bump pitch located in other regions of the die. The high density interconnect regions between die are interconnected using an interconnecting bridge made out of a material that can support high density interconnect manufactured into it, such as silicon. The lower density connection regions are used to attach interconnected die directly to a board using DCA. The high density interconnect can utilize current Controlled Collapsed Chip Connection (C4) spacing when interconnecting die with an interconnecting bridge, while allowing much larger spacing on circuit boards.
    Type: Grant
    Filed: February 21, 2017
    Date of Patent: October 15, 2019
    Assignee: Intel Corporation
    Inventors: Mihir K Roy, Mathew J Manusharow
  • Publication number: 20190304911
    Abstract: An embedded multi-die interconnect bridge (EMIB) die is configured with power delivery to the center of the EMIB die and the power is distributed to two dice that are interconnected across the EMIB die.
    Type: Application
    Filed: March 27, 2018
    Publication date: October 3, 2019
    Inventors: Andrew Collins, Debendra Mallik, Mathew J. Manusharow, Jianyong Xie
  • Patent number: 10410939
    Abstract: Embodiments of the invention include an electrical package and methods of forming the package. In one embodiment, the electrical package may include a first package layer. A plurality of signal lines with a first thickness may be formed on the first package layer. Additionally, a power plane with a second thickness may be formed on the first package layer. According to an embodiment, the second thickness is greater than the first thickness. Embodiments of the invention may form the power plane with a lithographic patterning and deposition process that is different than the lithographic patterning and deposition process used to form the plurality of signal lines. In an embodiment, the power plane may be formed concurrently with vias that electrically couple the signal lines to the next routing layer.
    Type: Grant
    Filed: December 16, 2015
    Date of Patent: September 10, 2019
    Assignee: Intel Corporation
    Inventors: Krishna Bharath, Mathew J. Manusharow, Adel A. Elsherbini, Mihir K. Roy, Aleksandar Aleksov, Yidnekachew S. Mekonnen, Javier Soto Gonzalez, Feras Eid, Suddhasattwa Nad, Meizi Jiao
  • Patent number: 10312007
    Abstract: A method and device includes a first conductor formed on a first dielectric layer as a partial turn of a coil. A second conductor is formed on a second dielectric layer that covers the first dielectric layer and first conductor, the second conductor forming a partial turn of the coil. A vertical interconnect couples the first and second conductors to form a first full turn of the coil. The interconnect coupling can be enhanced by embedding some selective magnetic materials into the substrate.
    Type: Grant
    Filed: December 11, 2012
    Date of Patent: June 4, 2019
    Assignee: Intel Corporation
    Inventors: Mihir K Roy, Mathew J Manusharow, Harold Ryan Chase
  • Publication number: 20190164881
    Abstract: Embodiments of the present disclosure are directed towards techniques and configurations for designing and assembling a die capable of being adapted to a number of different packaging configurations. In one embodiment an integrated circuit (IC) die may include a semiconductor substrate. The die may also include an electrically insulative material disposed on the semiconductor substrate; a plurality of electrical routing features disposed in the electrically insulative material to route electrical signals through the electrically insulative material; and a plurality of metal features disposed in a surface of the electrically insulative material. In embodiments, the plurality of metal features may be electrically coupled with the plurality of electrical routing features. In addition, the plurality of metal features may have an input/output (I/O) density designed to enable the die to be integrated with a plurality of different package configurations. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: January 31, 2019
    Publication date: May 30, 2019
    Inventors: Mathew J. MANUSHAROW, Dustin P. WOOD, Debendra MALLIK
  • Patent number: 10242942
    Abstract: Embodiments of the present disclosure are directed towards techniques and configurations for designing and assembling a die capable of being adapted to a number of different packaging configurations. In one embodiment an integrated circuit (IC) die may include a semiconductor substrate. The die may also include an electrically insulative material disposed on the semiconductor substrate; a plurality of electrical routing features disposed in the electrically insulative material to route electrical signals through the electrically insulative material; and a plurality of metal features disposed in a surface of the electrically insulative material. In embodiments, the plurality of metal features may be electrically coupled with the plurality of electrical routing features. In addition, the plurality of metal features may have an input/output (I/O) density designed to enable the die to be integrated with a plurality of different package configurations. Other embodiments may be described and/or claimed.
    Type: Grant
    Filed: April 25, 2014
    Date of Patent: March 26, 2019
    Assignee: INTEL CORPORATION
    Inventors: Mathew J. Manusharow, Dustin P. Wood, Debendra Mallik
  • Publication number: 20190051447
    Abstract: Devices and methods including a though-hole inductor for an electronic package are shown herein. Examples of the through-hole inductor include a substrate including at least one substrate layer. Each substrate layer including a dielectric layer having a first surface and a second surface. An aperture included in the dielectric layer is located from the first surface to the second surface. The aperture includes an aperture wall from the first surface to the second surface. A conductive layer is deposited on the first surface, second surface, and the aperture wall. At least one coil is cut from the conductive layer and located on the aperture wall.
    Type: Application
    Filed: October 17, 2018
    Publication date: February 14, 2019
    Inventors: William J. Lambert, Mihir K. Roy, Mathew J. Manusharow, Yikang Deng
  • Publication number: 20190027405
    Abstract: Embodiments of substrates, semiconductor devices and methods are shown that include elongated structures to improve conduction. Elongated structures and methods are also shown that provide electromagnetic isolation to reduce noise in adjacent components.
    Type: Application
    Filed: September 25, 2018
    Publication date: January 24, 2019
    Inventors: Harold Ryan Chase, Mihir K. Roy, Mathew J. Manusharow, Mark Hlad
  • Patent number: 10186465
    Abstract: Embodiments of the invention include package substrates that include microchannels and methods of making such package substrates. In an embodiment, the package substrate may include a first package layer. In some embodiments, a bottom channel wall may be formed over the first package layer. Embodiments may also include a channel sidewall that is formed in contact with the bottom channel wall. An organic dielectric layer may be formed over the first package layer. However, embodiments include a package substrate where the dielectric layer is not present within a perimeter of the channel sidewall. Additionally, a top channel wall may be supported by the channel sidewall. According to an embodiment, the top channel wall, the channel sidewall, and the bottom channel wall define a microchannel.
    Type: Grant
    Filed: September 25, 2015
    Date of Patent: January 22, 2019
    Assignee: Intel Corporation
    Inventors: Feras Eid, Adel A. Elsherbini, Henning Braunisch, Yidnekachew S. Mekonnen, Krishna Bharath, Mathew J. Manusharow, Aleksandar Aleksov, Nathan Fritz
  • Patent number: 10163557
    Abstract: Devices and methods including a though-hole inductor for an electronic package are shown herein. Examples of the through-hole inductor include a substrate including at least one substrate layer. Each substrate layer including a dielectric layer having a first surface and a second surface. An aperture included in the dielectric layer is located from the first surface to the second surface. The aperture includes an aperture wall from the first surface to the second surface. A conductive layer is deposited on the first surface, second surface, and the aperture wall. At least one coil is cut from the conductive layer and located on the aperture wall.
    Type: Grant
    Filed: December 17, 2015
    Date of Patent: December 25, 2018
    Assignee: Intel Corporation
    Inventors: William J. Lambert, Mihir K Roy, Mathew J Manusharow, Yikang Deng
  • Publication number: 20180331035
    Abstract: A ground isolation webbing structure package includes a top level with an upper interconnect layer having upper ground contacts, upper data signal contacts, and a conductive material upper ground webbing structure that is connected to the upper ground contacts and surrounds the upper data signal contacts. The upper contacts may be formed over and connected to via contacts or traces of a lower layer of the same interconnect level. The via contacts of the lower layer may be connected to upper contacts of a second interconnect level which may also have such webbing. There may also be at least a third interconnect level having such webbing. The webbing structure electrically isolates and reduces cross talk between the signal contacts, thus providing higher frequency and more accurate data signal transfer between devices such as integrated circuit (IC) chips attached to a package.
    Type: Application
    Filed: December 26, 2015
    Publication date: November 15, 2018
    Inventors: Yu Amos ZHANG, Mathew J. MANUSHAROW, Kemal AYGUN, Mohiuddin MAZUMDER
  • Publication number: 20180332708
    Abstract: Embodiments are generally directed to vertically embedded passive components. An embodiment of a device includes a semiconductor die; and a package coupled with the semiconductor die. The package includes one or more passive components connected with the semiconductor die, the one or more passive components being embedded vertically in the package substrate, each of the passive components including a first terminal and a second terminal. A first passive component is embedded in a through hole drilled in the package, the first terminal of the first passive component being connected to the semiconductor die by a via through an upper buildup layer on the package.
    Type: Application
    Filed: December 26, 2015
    Publication date: November 15, 2018
    Inventors: William J. LAMBERT, Mihir K. ROY, Mathew J. MANUSHAROW
  • Publication number: 20180331042
    Abstract: An integrated circuit package is disclosed. The integrated circuit package includes a first integrated circuit die, a second integrated circuit die, an organic substrate, wherein both the first integrated circuit die and the second integrated circuit die are connected to the organic substrate, a multi-die interconnect bridge (EMIB) embedded within the organic substrate, and a termination resistor associated with a circuit in the first integrated circuit die, wherein the termination resistor is located within the multi-die interconnect bridge embedded within the organic substrate.
    Type: Application
    Filed: December 23, 2015
    Publication date: November 15, 2018
    Inventors: Mathew J. Manusharow, Jonathan Rosenfeld