Patents by Inventor Matthew L. Miller

Matthew L. Miller has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180023376
    Abstract: A method of removing a soluble metal ion from a contaminated brine fluid comprising: adding lime to the contaminated brine fluid, wherein the lime causes the soluble metal ion to become insoluble in the contaminated brine fluid; and passing the contaminated brine fluid through a filter media, wherein the step of passing is performed after the step of adding, and wherein after the brine fluid is passed through the filter media, a brine fluid having a reduced concentration of the metal ion is produced. Another method of removing a soluble metal ion from a contaminated brine fluid comprises: passing the contaminated brine fluid through a filter media, wherein the filter media comprises the lime.
    Type: Application
    Filed: March 7, 2015
    Publication date: January 25, 2018
    Inventors: Chesnee L. DAVIS, Jay P. DEVILLE, Matthew L. MILLER
  • Patent number: 9809736
    Abstract: A method of servicing a wellbore in a subterranean formation comprising placing a wellbore servicing fluid comprising a lost-circulation composite material into a wellbore, wherein the lost-circulation composite material comprises a swellable component and a reinforcing component. A wellbore servicing fluid comprising a reinforcing component disposed within a swellable component wherein the swellable component comprises a crosslinked polymer.
    Type: Grant
    Filed: August 31, 2012
    Date of Patent: November 7, 2017
    Assignee: HALLIBURTON ENERGY SERVICES, INC.
    Inventors: Robert J. Murphy, Matthew L. Miller
  • Patent number: 9797213
    Abstract: A hydrated inorganic oxide material capable of elongating from a planar shape to a fiber shape along a thickness direction of the planar shape, wherein the fiber shape is at least about 25 times greater in the thickness direction than the planar shape, and wherein during elongating a radial dimension of the hydrated inorganic oxide material changes by less than about 10% may be useful in a plurality of wellbore operations. For example, a method may include introducing a wellbore fluid comprising an aqueous base fluid and a hydrated inorganic oxide material into a wellbore penetrating a subterranean formation; and swelling the hydrated inorganic oxide material by contacting the hydrated inorganic oxide material with a polar amine compound such that the hydrated inorganic oxide material elongates from a planar shape to a fiber shape along a thickness direction of the planar shape.
    Type: Grant
    Filed: October 22, 2013
    Date of Patent: October 24, 2017
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Matthew L. Miller, Robert J. Murphy, Kay Ann Galindo
  • Patent number: 9725635
    Abstract: A wellbore treatment fluid containing lost circulation materials and methods for using the treatment fluid, the fluid including a carrier fluid and shape changing polymer structures. The shape changing polymer structures may be folded or rolled into various cross-sectional surface area reducing configurations and are capable of reversibly extending and reversibly contracting with changes in temperature. The materials forming the shape changing polymer structures may include at least one selected from poly[ethylene-co-(vinyl acetate)], poly(?-pentadecalactone), poly(?-caprolactone), and copolymers thereof. A method for utilizing the treatment fluid for creation or maintenance of a well includes forming or providing the treatment fluid and introducing the treatment fluid into a borehole.
    Type: Grant
    Filed: January 17, 2014
    Date of Patent: August 8, 2017
    Assignee: HALLIBURTON ENERGY SERVICES, INC.
    Inventors: Sharath Savari, Matthew L. Miller
  • Publication number: 20160312098
    Abstract: A wellbore treatment fluid containing lost circulation materials and methods for using the treatment fluid, the fluid including a carrier fluid and shape changing polymer structures. The shape changing polymer structures may be folded or rolled into various cross-sectional surface area reducing configurations and are capable of reversibly extending and reversibly contracting with changes in temperature. The materials forming the shape changing polymer structures may include at least one selected from poly[ethylene-co-(vinyl acetate)], poly(?-pentadecalactone), poly(?-caprolactone), and copolymers thereof. A method for utilizing the treatment fluid for creation or maintenance of a well includes forming or providing the treatment fluid and introducing the treatment fluid into a borehole.
    Type: Application
    Filed: January 17, 2014
    Publication date: October 27, 2016
    Inventors: Sharath SAVARI, Matthew L. MILLER
  • Publication number: 20160312102
    Abstract: In some instances, a fluid loss control enhancement additive may synergistically work with lost circulation materials (“LCM”) to arrest lost circulation in wellbores where LCMs alone have been ineffective. For example, a method may involve treating a wellbore penetrating a subterranean formation with a pill comprising an aqueous base fluid and a lost circulation material; observing fluid loss from the wellbore to the subterranean formation while treating the wellbore with the pill; and adding salt, a swellable polymer, and fibers to the pill.
    Type: Application
    Filed: January 14, 2014
    Publication date: October 27, 2016
    Applicant: Halliburton Energy Services, Inc.
    Inventors: Donald Lee Whitfill, Sharath Savari, Matthew L. Miller, Dale E. Jamison, Robert J. Murphy
  • Publication number: 20160257869
    Abstract: A treatment fluid comprises: a base fluid; a lost-circulation material, wherein the lost-circulation material inhibits or prevents some or all of the treatment fluid from penetrating into a subterranean formation from a wellbore, wherein the wellbore penetrates the subterranean formation; and a suspending agent, wherein the suspending agent consists of a plurality of fibers, and wherein the suspending agent provides a lost-circulation material distribution of at least 30% for a test treatment fluid consisting essentially of the base fluid, the lost-circulation material, and the suspending agent at the temperature of a lost-circulation zone of the subterranean formation and static aging for at least 1 hour.
    Type: Application
    Filed: November 25, 2013
    Publication date: September 8, 2016
    Inventors: Sandeep D. Kulkarni, Matthew L. Miller, Dale E. Jamison, Kushabhau D. Teke
  • Publication number: 20160237772
    Abstract: A hydrated inorganic oxide material capable of elongating from a planar shape to a fiber shape along a thickness direction of the planar shape, wherein the fiber shape is at least about 25 times greater in the thickness direction than the planar shape, and wherein during elongating a radial dimension of the hydrated inorganic oxide material changes by less than about 10% may be useful in a plurality of wellbore operations. For example, a method may include introducing a wellbore fluid comprising an aqueous base fluid and a hydrated inorganic oxide material into a wellbore penetrating a subterranean formation; and swelling the hydrated inorganic oxide material by contacting the hydrated inorganic oxide material with a polar amine compound such that the hydrated inorganic oxide material elongates from a planar shape to a fiber shape along a thickness direction of the planar shape.
    Type: Application
    Filed: October 22, 2013
    Publication date: August 18, 2016
    Applicant: Halliburton Energy Services, Inc.
    Inventors: Matthew L. Miller, Robert J. Murphy, Kay Galindo
  • Publication number: 20160130939
    Abstract: An apparatus for testing lost circulation materials (“LCMs”) for use in a formation is disclosed. The apparatus may comprise a LCM cell that contains at least one formation simulation component. A pressurized tank may be in fluid communication with the LCM cell, and may force a sample LCM slurry into the LCM cell. An LCM receiver may also be in fluid communication with the LCM cell, and may receive the LCM slurry that flows through the LCM cell.
    Type: Application
    Filed: January 15, 2016
    Publication date: May 12, 2016
    Inventors: Robert J. Murphy, Dale E. Jamison, Matthew L. Miller
  • Patent number: 9284798
    Abstract: Methods of treating a fluid loss zone in a wellbore in a subterranean formation including providing swellable particles having an initial unswelled volume, wherein the swellable particles upon swelling adopt a specific shape; introducing the swellable particles into the wellbore in the subterranean formation; and swelling the swellable particles so as to adopt a swelled volume beyond the initial unswelled volume; and sealing at least a portion of the fluid loss zone.
    Type: Grant
    Filed: February 19, 2013
    Date of Patent: March 15, 2016
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Dale E. Jamison, Robert J. Murphy, Matthew L. Miller
  • Patent number: 9285355
    Abstract: An apparatus for testing lost circulation materials (“LCMs”) for use in a formation is disclosed. The apparatus may comprise a LCM cell that contains at least one formation simulation component. A pressurized tank may be in fluid communication with the LCM cell, and may force a sample LCM slurry into the LCM cell. An LCM receiver may also be in fluid communication with the LCM cell, and may receive the LCM slurry that flows through the LCM cell.
    Type: Grant
    Filed: January 30, 2012
    Date of Patent: March 15, 2016
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Robert J. Murphy, Dale E. Jamison, Matthew L. Miller
  • Publication number: 20160033382
    Abstract: Apparatus and methods for simulation of bore hole fractures are disclosed. A device for simulating a fracture in a subterranean formation comprises a housing, a gap in the housing, and one or more shims positioned inside the gap. The shims cover at least a portion of a surface of a wall forming the gap. The device further comprises an inlet for directing a sample fluid into the gap. The sample fluid flows through the gap and flows out of the gap through an outlet.
    Type: Application
    Filed: October 15, 2015
    Publication date: February 4, 2016
    Inventors: Dale E. Jamison, Robert J. Murphy, Matthew L. Miller, Sharath Savari
  • Patent number: 9188522
    Abstract: Apparatus and methods for simulation of bore hole fractures are disclosed. A device for simulating a fracture in a subterranean formation comprises a housing, a gap in the housing, and one or more shims positioned inside the gap. The shims cover at least a portion of a surface of a wall forming the gap. The device further comprises an inlet for directing a sample fluid into the gap. The sample fluid flows through the gap and flows out of the gap through an outlet.
    Type: Grant
    Filed: May 10, 2012
    Date of Patent: November 17, 2015
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Dale E. Jamison, Robert J. Murphy, Matthew L. Miller, Sharath Savari
  • Patent number: 9157306
    Abstract: A treatment fluid for treating a portion of a subterranean formation comprises: a base fluid, wherein the base fluid comprises a hydrocarbon liquid; and a gellant, wherein the gellant: is a polymer; and is activated at an activation temperature, wherein the thermal activation of the gellant causes the treatment fluid to become a gel. A method of treating a portion of a subterranean formation includes introducing the treatment fluid into the portion of the subterranean formation, wherein the subterranean formation is penetrated by a well, wherein at least a portion of the well has a bottomhole temperature greater than or equal to the activation temperature, and wherein the step of introducing comprises introducing the treatment fluid into the portion of the well.
    Type: Grant
    Filed: May 16, 2013
    Date of Patent: October 13, 2015
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Matthew L. Miller, Jay P. Deville
  • Patent number: 9144147
    Abstract: Substrate processing systems are described that have a capacitively coupled plasma (CCP) unit positioned inside a process chamber. The CCP unit may include a plasma excitation region formed between a first electrode and a second electrode. The first electrode may include a first plurality of openings to permit a first gas to enter the plasma excitation region, and the second electrode may include a second plurality of openings to permit an activated gas to exit the plasma excitation region. The system may further include a gas inlet for supplying the first gas to the first electrode of the CCP unit, and a pedestal that is operable to support a substrate. The pedestal is positioned below a gas reaction region into which the activated gas travels from the CCP unit.
    Type: Grant
    Filed: February 21, 2013
    Date of Patent: September 22, 2015
    Assignee: Applied Materials, Inc.
    Inventors: Jang-Gyoo Yang, Matthew L. Miller, Xinglong Chen, Kien N. Chuc, Qiwei Liang, Shankar Venkataraman, Dmitry Lubomirsky
  • Patent number: 9140118
    Abstract: A method of predictive modeling of a treatment fluid comprises: determining the value of properties of a base fluid and insoluble particulates; providing a proposed suspending agent; performing a first calculation of the suspendability of the proposed suspending agent as determined by a yield gravity function equation; evaluating if the result from the first calculation indicates a stable treatment fluid comprising the base fluid, the insoluble particulates, and the proposed suspending agent, or if the result does not indicate a stable treatment fluid, then: modifying the value of at least one of the properties of the proposed suspending agent, base fluid, and/or insoluble particulate; and performing a second calculation, wherein the same or different property values are continued to be modified and the calculation is continued to be performed until the result indicates a stable treatment fluid; and introducing the stable treatment fluid into a wellbore.
    Type: Grant
    Filed: October 1, 2014
    Date of Patent: September 22, 2015
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Sandeep D. Kulkarni, Matthew L. Miller, Dale E. Jamison, Kushabhau D. Teke
  • Publication number: 20150144332
    Abstract: A method of predictive modeling of a treatment fluid comprises: determining the value of properties of a base fluid and insoluble particulates; providing a proposed suspending agent; performing a first calculation of the suspendability of the proposed suspending agent as determined by a yield gravity function equation; evaluating if the result from the first calculation indicates a stable treatment fluid comprising the base fluid, the insoluble particulates, and the proposed suspending agent, or if the result does not indicate a stable treatment fluid, then: modifying the value of at least one of the properties of the proposed suspending agent, base fluid, and/or insoluble particulate; and performing a second calculation, wherein the same or different property values are continued to be modified and the calculation is continued to be performed until the result indicates a stable treatment fluid; and introducing the stable treatment fluid into a wellbore.
    Type: Application
    Filed: October 1, 2014
    Publication date: May 28, 2015
    Inventors: Sandeep D. KULKARNI, Matthew L. MILLER, Dale E. JAMISON, Kushabhau D. TEKE
  • Patent number: 8969264
    Abstract: A treatment fluid comprises: a metal oxide, wherein the metal oxide is capable of forming a chelate complex or coordination complex with a ligand, wherein the chelate complex or coordination complex has a setting time of less than 90 minutes at a temperature of 71° F. and a pressure of 1 atmosphere. A method of treating a portion of a subterranean formation comprises: introducing the treatment fluid into the subterranean formation; allowing or causing a chelate complex or coordination complex to form between the metal oxide and a ligand; and allowing or causing the chelate complex or coordination complex to set.
    Type: Grant
    Filed: April 4, 2013
    Date of Patent: March 3, 2015
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Dale E. Jamison, Donald L. Whitfill, Matthew L. Miller, Kay A. Morris
  • Patent number: 8972235
    Abstract: Apparatus and methods for simulation of bore hole fractures are disclosed. A device for simulating a fracture in a subterranean formation comprises a housing, an inlet for directing a sample fluid to the housing, and a first disk and a second disk positioned within the housing. The second disk is movable relative to the first disk to form an adjustable gap between the first disk and the second disk and the sample fluid flows through the adjustable gap. A common collector receives at least a portion of the sample fluid that flows through at least one of the first disk and the second disk.
    Type: Grant
    Filed: February 21, 2012
    Date of Patent: March 3, 2015
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Robert J. Murphy, Dale E. Jamison, Matthew L. Miller
  • Publication number: 20140338912
    Abstract: A treatment fluid for treating a portion of a subterranean formation comprises: a base fluid, wherein the base fluid comprises a hydrocarbon liquid; and a gellant, wherein the gellant: is a polymer; and is activated at an activation temperature, wherein the thermal activation of the gellant causes the treatment fluid to become a gel. A method of treating a portion of a subterranean formation includes introducing the treatment fluid into the portion of the subterranean formation, wherein the subterranean formation is penetrated by a well, wherein at least a portion of the well has a bottomhole temperature greater than or equal to the activation temperature, and wherein the step of introducing comprises introducing the treatment fluid into the portion of the well.
    Type: Application
    Filed: May 16, 2013
    Publication date: November 20, 2014
    Applicant: HALLIBURTON ENERGY SERVICES, INC.
    Inventors: Matthew L. MILLER, Jay P. DEVILLE