Patents by Inventor Matthew L. Miller

Matthew L. Miller has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120316089
    Abstract: A drilling fluid may include a base drilling fluid and a plurality of particulates, wherein a concentration of the particulates in the base drilling fluid provides for ?N1(F)??N1(P), wherein ?N1(F)=|N1(A)|?|N1(B)|. The particulates may be lost circulation materials including, for example, fibers.
    Type: Application
    Filed: August 22, 2012
    Publication date: December 13, 2012
    Applicant: Halliburton Energy Services, Inc.
    Inventors: Sandeep D. Kulkarni, Sharath Savari, Arunesh Kumar, Matthew L. Miller, Robert Murphy, Dale E. Jamison
  • Publication number: 20120316088
    Abstract: A method for determining a Plug Normal Stress Difference (?N1(P)) may include providing a test base drilling fluid that is characterized by N1(TB); adding a first concentration of a test particulate to the test base drilling fluid; adjusting the concentration of the test particulate in the test base drilling fluid to achieve a minimum concentration of the test particulate in the test base drilling fluid that will substantially plug a tapered slot, wherein the test base drilling fluid with the minimum concentration of the test particulate is characterized by N1(TA); and calculating ?N1(P)=|N1(TA)|?|N1(TB)| wherein each First Normal Stress Difference is measured by the same procedure.
    Type: Application
    Filed: August 22, 2012
    Publication date: December 13, 2012
    Applicant: Halliburton Energy Services, Inc.
    Inventors: Sandeep D. Kulkarni, Sharath Savari, Arunesh Kumar, Matthew L. Miller, Robert Murphy, Dale E. Jamison
  • Patent number: 8329262
    Abstract: Methods of forming a silicon-and-nitrogen-containing layers and silicon oxide layers are described. The methods include the steps of mixing a carbon-free silicon-containing precursor with plasma effluents, and depositing a silicon-and-nitrogen-containing layer on a substrate. The silicon-and-nitrogen-containing layers may be made flowable or conformal by selection of the flow rate of excited effluents from a remote plasma region into the substrate processing region. The plasma effluents are formed in a plasma by flowing inert gas(es) into the plasma. The silicon-and-nitrogen-containing layer may be converted to a silicon-and-oxygen-containing layer by curing and annealing the film.
    Type: Grant
    Filed: September 2, 2010
    Date of Patent: December 11, 2012
    Assignee: Applied Materials, Inc.
    Inventors: Matthew L. Miller, Jang-Gyoo Yang
  • Patent number: 8324525
    Abstract: A method processing a workpiece in a plasma reactor chamber in which a first one of plural applied RF plasma powers is modulated in accordance with a time-varying modulation control signal corresponding to a desired process transient cycle. The method achieves a reduction in reflected power by modulating a second one of the plural plasma powers in response to the time-varying modulation control signal.
    Type: Grant
    Filed: May 29, 2008
    Date of Patent: December 4, 2012
    Assignee: Applied Materials, Inc.
    Inventors: Steven C. Shannon, Kartik Ramaswamy, Daniel J. Hoffman, Matthew L. Miller, Kenneth S. Collins
  • Patent number: 8313578
    Abstract: A plasma processing chamber having a lowered flow equalizer and a lower chamber liner. In an etching process, the processing gases may be unevenly drawn from the processing chamber which may cause an uneven etching of the substrate. By equalizing the flow of the processing gases evacuated from the chamber, a more uniform etching may occur. By electrically coupling the flow equalizer to the chamber liners, the RF return path from the flow equalizer may run along the chamber liners and hence, reduce the amount of plasma drawn below the substrate during processing.
    Type: Grant
    Filed: November 23, 2009
    Date of Patent: November 20, 2012
    Assignee: Applied Materials, Inc.
    Inventors: James D. Carducci, Kin Pong Lo, Kallol Bera, Michael C. Kutney, Matthew L. Miller
  • Publication number: 20120264658
    Abstract: Of the many compositions and methods provided herein, one method includes providing a drilling fluid comprising a base drilling fluid and a plurality of particulates, wherein the base drilling fluid without the particulates is characterized by N1(B) and wherein the base drilling fluid with the particulates is characterized by N1(A); and adjusting a concentration of the particulates in the drilling fluid by comparing the value of ?N1(F) to ?N1(P) so that ?N1(F)??N1(P), wherein ?N1(F)=|N1(A)|?|N1(B)|.
    Type: Application
    Filed: June 1, 2011
    Publication date: October 18, 2012
    Inventors: Sandeep D. Kulkarni, Sharath Savari, Arunesh Kumar, Matthew L. Miller, Robert Murphy, Dale E. Jamison
  • Patent number: 8237517
    Abstract: Apparatus and methods are provided for a power matching apparatus for use with a processing chamber. In one aspect of the invention, a power matching apparatus is provided including a first RF power input coupled to a first adjustable capacitor, a second RF power input coupled to a second adjustable capacitor, a power junction coupled to the first adjustable capacitor and the second adjustable capacitor, a receiver circuit coupled to the power junction, a high voltage filter coupled to the power junction and the high voltage filter has a high voltage output, a voltage/current detector coupled to the power junction and a RF power output connected to the voltage/current detector.
    Type: Grant
    Filed: August 9, 2011
    Date of Patent: August 7, 2012
    Assignee: Applied Materials, Inc.
    Inventors: Steven C. Shannon, Jang Gyoo Yang, Matthew L. Miller, Kartik Ramaswamy, James P. Cruse
  • Publication number: 20120180954
    Abstract: Substrate processing systems are described that have a capacitively coupled plasma (CCP) unit positioned inside a process chamber. The CCP unit may include a plasma excitation region formed between a first electrode and a second electrode. The first electrode may include a first plurality of openings to permit a first gas to enter the plasma excitation region, and the second electrode may include a second plurality of openings to permit an activated gas to exit the plasma excitation region. The system may further include a gas inlet for supplying the first gas to the first electrode of the CCP unit, and a pedestal that is operable to support a substrate. The pedestal is positioned below a gas reaction region into which the activated gas travels from the CCP unit.
    Type: Application
    Filed: October 3, 2011
    Publication date: July 19, 2012
    Applicant: Applied Materials, Inc.
    Inventors: Jang-Gyoo Yang, Matthew L. Miller, Xinglong Chen, Kien N. Chuc, Qiwei Liang, Shankar Venkataraman, Dmitry Lubomirsky
  • Patent number: 8135202
    Abstract: An automated method and system for analyzing a digital image of a biopsy to determine whether the biopsy is normal or abnormal, i.e., exhibits some type of disease such as, but not limited to, cancer. In the method and system, a classifier is trained to recognize well formed nuclei outlines from imperfect nuclei outlines in digital biopsy images. The trained classifier may then be used to filter nuclei outlines from one or more digital biopsy images to be analyzed, to obtain the well formed nuclei outlines. The well formed nuclei outlines may then be used to obtain statistics on the size or area of the nuclei for use in determining whether the biopsy is normal or abnormal.
    Type: Grant
    Filed: June 2, 2008
    Date of Patent: March 13, 2012
    Assignee: NEC Laboratories America, Inc.
    Inventors: Eric Cosatto, Hans-Peter Graf, Matthew L. Miller
  • Patent number: 8123902
    Abstract: A method and apparatus for providing flow into a processing chamber are provided. In one embodiment, a vacuum processing chamber is provided that includes a chamber body having an interior volume, a substrate support disposed in the interior volume and a gas distribution assembly having an asymmetrical distribution of gas injection ports. In another embodiment, a method for vacuum processing a substrate is provided that includes disposing a substrate on a substrate support within in a processing chamber, flowing process gas into laterally into a space defined above a gas distribution plate positioned in the processing chamber over the substrate, and processing the substrate in the presence of the processing gas.
    Type: Grant
    Filed: March 21, 2007
    Date of Patent: February 28, 2012
    Assignee: Applied Materials, Inc.
    Inventors: Paul Brillhart, Daniel J. Hoffman, James D. Carducci, Xiaoping Zhou, Matthew L. Miller
  • Patent number: 8080479
    Abstract: A method of processing a workpiece in a plasma reactor chamber includes coupling RF power via an electrode to plasma in the chamber, the RF power being of a variable frequency in a frequency range that includes a fundamental frequency f. The method also includes coupling the electrode to a resonator having a resonant VHF frequency F which is a harmonic of the fundamental frequency f, so as to produce VHF power at the harmonic. The method controls the ratio of power near the fundamental f to power at harmonic F, by controlling the proportion of power from the generator that is up-converted from f to F, so as to control plasma ion density distribution.
    Type: Grant
    Filed: April 11, 2007
    Date of Patent: December 20, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Kenneth S. Collins, Hiroji Hanawa, Kartik Ramaswamy, Douglas A. Buchberger, Jr., Shahid Rauf, Kallol Bera, Lawrence Wong, Walter R. Merry, Matthew L. Miller, Steven C. Shannon, Andrew Nguyen, James P. Cruse, James Carducci, Troy S. Detrick, Subhash Deshmukh, Jennifer Y. Sun
  • Patent number: 8076247
    Abstract: A method is provided for processing a workpiece in a plasma reactor chamber. The method includes coupling, to a plasma in the chamber, power of an RF frequency via a ceiling electrode and coupling, to the plasma, power of at least approximately the same RF frequency via a workpiece support electrode. The method also includes providing an edge ground return path. The method further includes adjusting the proportion between (a) current flow between said electrodes and (b) current flow to the edge ground return path from said electrodes, to control plasma ion density distribution uniformity over the workpiece.
    Type: Grant
    Filed: April 11, 2007
    Date of Patent: December 13, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Kenneth S. Collins, Hiroji Hanawa, Kartik Ramaswamy, Douglas A. Buchberger, Jr., Shahid Rauf, Kallol Bera, Lawrence Wong, Walter R. Merry, Matthew L. Miller, Steven C. Shannon, Andrew Nguyen, James P. Cruse, James Carducci, Troy S. Detrick, Subhash Deshmukh, Jennifer Y. Sun
  • Publication number: 20110291771
    Abstract: Apparatus and methods are provided for a power matching apparatus for use with a processing chamber. In one aspect of the invention, a power matching apparatus is provided including a first RF power input coupled to a first adjustable capacitor, a second RF power input coupled to a second adjustable capacitor, a power junction coupled to the first adjustable capacitor and the second adjustable capacitor, a receiver circuit coupled to the power junction, a high voltage filter coupled to the power junction and the high voltage filter has a high voltage output, a voltage/current detector coupled to the power junction and a RF power output connected to the voltage/current detector.
    Type: Application
    Filed: August 9, 2011
    Publication date: December 1, 2011
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Steven C. Shannon, Jang Gyoo Yang, Matthew L. Miller, Kartik Ramaswamy, James P. Cruse
  • Patent number: 8018164
    Abstract: Fluctuations in a plasma characteristic such as load impedance are compensated by a controller that modulates a stabilization RF generator coupled to the plasma having a frequency suitable for stabilizing the plasma characteristic, the controller being responsive to the fluctuations in the plasma characteristic.
    Type: Grant
    Filed: May 29, 2008
    Date of Patent: September 13, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Steven C. Shannon, Kartik Ramaswamy, Daniel J. Hoffman, Matthew L. Miller, Kenneth S. Collins
  • Patent number: 8002945
    Abstract: A method is provided in plasma processing of a workpiece for stabilizing the plasma against engineered transients in applied RF power, by modulating an unmatched low power RF generator in synchronism with the transient.
    Type: Grant
    Filed: May 29, 2008
    Date of Patent: August 23, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Steven C. Shannon, Kartik Ramaswamy, Daniel J. Hoffman, Matthew L. Miller, Kenneth S. Collins
  • Publication number: 20110201134
    Abstract: A plasma reactor includes a vacuum enclosure including a side wall and a ceiling defining a vacuum chamber, and a workpiece support within the chamber and facing the ceiling for supporting a planar workpiece, the workpiece support and the ceiling together defining a processing region between the workpiece support and the ceiling. Process gas inlets furnish a process gas into the chamber. A plasma source power electrode is connected to an RF power generator for capacitively coupling plasma source power into the chamber for maintaining a plasma within the chamber. The reactor further includes at least a first overhead solenoidal electromagnet adjacent the ceiling, the overhead solenoidal electromagnet, the ceiling, the side wall and the workpiece support being located along a common axis of symmetry.
    Type: Application
    Filed: April 6, 2011
    Publication date: August 18, 2011
    Inventors: Daniel J. Hoffman, Matthew L. Miller, Jang Gyoo Yang, Heeyeop Chae, Michael Barnes, Tetsuya Ishikawa, Yan Ye
  • Patent number: 7994872
    Abstract: Apparatus and methods are provided for a power matching apparatus for use with a processing chamber. In one aspect of the invention, a power matching apparatus is provided including a first RF power input coupled to a first adjustable capacitor, a second RF power input coupled to a second adjustable capacitor, a power junction coupled to the first adjustable capacitor and the second adjustable capacitor, a receiver circuit coupled to the power junction, a high voltage filter coupled to the power junction and the high voltage filter has a high voltage output, a voltage/current detector coupled to the power junction and a RF power output connected to the voltage/current detector.
    Type: Grant
    Filed: July 21, 2009
    Date of Patent: August 9, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Steven C. Shannon, Jang Gyoo Yang, Matthew L. Miller, Kartik Ramaswamy, James P. Cruse
  • Publication number: 20110165347
    Abstract: Methods of forming a silicon-and-nitrogen-containing layers and silicon oxide layers are described. The methods include the steps of mixing a carbon-free silicon-containing precursor with plasma effluents, and depositing a silicon-and-nitrogen-containing layer on a substrate. The silicon-and-nitrogen-containing layers may be made flowable or conformal by selection of the flow rate of excited effluents from a remote plasma region into the substrate processing region. The plasma effluents are formed in a plasma by flowing inert gas(es) into the plasma. The silicon-and-nitrogen-containing layer may be converted to a silicon-and-oxygen-containing layer by curing and annealing the film.
    Type: Application
    Filed: September 2, 2010
    Publication date: July 7, 2011
    Applicant: Applied Materials, Inc.
    Inventors: Matthew L. Miller, Jang-Gyoo Yang
  • Publication number: 20110159703
    Abstract: Methods of forming dielectric layers are described. The method may include the steps of mixing a silicon-containing precursor with a radical-nitrogen precursor, and depositing a dielectric layer on a substrate. The radical-nitrogen precursor is formed in a remote plasma by flowing hydrogen (H2) and nitrogen (N2) into the plasma in order to allow adjustment of the nitrogen/hydrogen ratio. The dielectric layer is initially a silicon-and-nitrogen-containing layer which may be converted to a silicon-and-oxygen-containing layer by curing and/or annealing the film in an oxygen-containing environment.
    Type: Application
    Filed: December 16, 2010
    Publication date: June 30, 2011
    Applicant: Applied Materials, Inc.
    Inventors: Jingmei Liang, Xiaolin Chen, Matthew L. Miller, Nitin K. Ingle, Shankar Venkataraman
  • Patent number: 7968469
    Abstract: A method for processing a workpiece in a plasma reactor chamber includes coupling RF power at a first VHF frequency f1 to a plasma via one of the electrodes of the chamber, and providing a center ground return path for RF current passing directly between the ceiling electrode and the workpiece support electrode for the frequency f1. The method further includes providing a variable height edge ground annular element and providing a ground return path through the edge ground annular element for the frequency f1. The method controls the uniformity of plasma ion density distribution by controlling the distance between the variable height edge ground annular element and one of: (a) height of ceiling electrode or (b) height of workpiece support electrode.
    Type: Grant
    Filed: April 11, 2007
    Date of Patent: June 28, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Kenneth S. Collins, Hiroji Hanawa, Kartik Ramaswamy, Douglas A. Buchberger, Jr., Shahid Rauf, Kallol Bera, Lawrence Wong, Walter R. Merry, Matthew L. Miller, Steven C. Shannon, Andrew Nguyen, James P. Cruse, James Carducci, Troy S. Detrick, Subhash Deshmukh, Jennifer Y. Sun