Patents by Inventor Matthew Meitl

Matthew Meitl has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10395966
    Abstract: In certain embodiments, a method of making a semiconductor structure suitable for transfer printing (e.g., micro-transfer printing) includes providing a support substrate and disposing and processing one or more semiconductor layers on the support substrate to make a completed semiconductor device. A patterned release layer and, optionally, a capping layer are disposed on or over the completed semiconductor device and the patterned release layer or capping layer, if present, are bonded to a handle substrate with a bonding layer. The support substrate is removed to expose the completed semiconductor device and, in some embodiments, a portion of the patterned release layer. In some embodiments, an entry path is formed to expose a portion of the patterned release layer. In some embodiments, the release layer is etched and the completed semiconductor devices transfer printed (e.g., micro-transfer printed) from the handle substrate to a destination substrate.
    Type: Grant
    Filed: April 3, 2018
    Date of Patent: August 27, 2019
    Assignee: X-Celeprint Limited
    Inventors: Christopher Bower, Matthew Meitl, António José Marques Trindade, Ronald S. Cok, Brook Raymond, Carl Prevatte
  • Patent number: 10396238
    Abstract: The present invention provides structures and methods that enable the construction of micro-LED chiplets formed on a sapphire substrate that can be micro-transfer printed. Such printed structures enable low-cost, high-performance arrays of electrically connected micro-LEDs useful, for example, in display systems. Furthermore, in an embodiment, the electrical contacts for printed LEDs are electrically interconnected in a single set of process steps. In certain embodiments, formation of the printable micro devices begins while the semiconductor structure remains on a substrate. After partially forming the printable micro devices, a handle substrate is attached to the system opposite the substrate such that the system is secured to the handle substrate. The substrate may then be removed and formation of the semiconductor structures is completed. Upon completion, the printable micro devices may be micro transfer printed to a destination substrate.
    Type: Grant
    Filed: September 21, 2018
    Date of Patent: August 27, 2019
    Assignee: X-Celeprint Limited
    Inventors: Christopher Bower, Matthew Meitl, David Gomez, Carl Prevatte, Salvatore Bonafede
  • Patent number: 10395582
    Abstract: A parallel redundant integrated-circuit system includes an input connection, an output connection and first and second active circuits. The first active circuit includes one or more first integrated circuits and has an input connected to the input connection and an output connected to the output connection. The second active circuit includes one or more second integrated circuits and is redundant to the first active circuit, has an input connected to the input connection, and has an output connected to the output connection. The second integrated circuits are separate and distinct from the first integrated circuits.
    Type: Grant
    Filed: August 3, 2018
    Date of Patent: August 27, 2019
    Assignee: X-Celeprint Limited
    Inventors: Ronald S. Cok, Robert R. Rotzoll, Christopher Bower, Matthew Meitl
  • Patent number: 10381430
    Abstract: A structure with an interconnection layer for redistribution of electrical connections includes a plurality of first electrical connections disposed on a substrate in a first arrangement. An insulating layer is disposed on the substrate over the first electrical connections. A plurality of second electrical connections is disposed on the insulating layer on a side of the insulating layer opposite the plurality of first electrical connections in a second arrangement. Each second electrical connection is electrically connected to a respective first electrical connection. An integrated circuit is disposed on the substrate and is electrically connected to the first electrical connections. The first electrical connections in the first arrangement have a greater spatial density than the second electrical connections in the second arrangement.
    Type: Grant
    Filed: January 8, 2018
    Date of Patent: August 13, 2019
    Assignee: X-Celeprint Limited
    Inventors: Christopher Bower, Matthew Meitl, Ronald S. Cok
  • Patent number: 10380930
    Abstract: A heterogeneous light-emitter display includes a display substrate having a plurality of pixels disposed thereon. Each pixel including at least a first heterogeneous multiple-component sub-pixel emitting a first color of light and a second sub-pixel emitting a second color of light different from the first color. A heterogeneous light-emitter display can also include an array of heterogeneous pixels. Each heterogeneous pixel includes a plurality of first pixels and a plurality of second pixels. The first sub-pixel of each of the first pixels includes a first light emitter and the first sub-pixel of each of the second pixels includes a second light emitter different from the first light emitter. One or more pixel controllers control the pixels, the first and second pixels, the first and second sub-pixels, and the first and second light emitters.
    Type: Grant
    Filed: August 24, 2015
    Date of Patent: August 13, 2019
    Assignee: X-Celeprint Limited
    Inventors: Ronald S. Cok, Christopher Bower, Matthew Meitl
  • Patent number: 10374072
    Abstract: The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.
    Type: Grant
    Filed: June 30, 2017
    Date of Patent: August 6, 2019
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: Ralph G. Nuzzo, John A. Rogers, Etienne Menard, Keon Jae Lee, Dahl-Young Khang, Yugang Sun, Matthew Meitl, Zhengtao Zhu
  • Publication number: 20190229231
    Abstract: A transfer-printable (e.g., micro-transfer-printable) device source wafer comprises a growth substrate comprising a growth material, a plurality of device structures comprising one or more device materials different from the growth material, the device structures disposed on and laterally spaced apart over the growth substrate, each device structure comprising a device, and a patterned dissociation interface disposed between each device structure of the plurality of device structures and the growth substrate. The growth material is more transparent to a desired frequency of electromagnetic radiation than at least one of the one or more device materials. The patterned dissociation interface has one or more areas of relatively greater adhesion each defining an anchor between the growth substrate and a device structure of the plurality of device structures and one or more dissociated areas of relatively lesser adhesion between the growth substrate and the device structure of the plurality of device structures.
    Type: Application
    Filed: December 4, 2018
    Publication date: July 25, 2019
    Inventors: Brook Raymond, Christopher Andrew Bower, Matthew Meitl, Ronald S. Cok
  • Patent number: 10361677
    Abstract: A micro-transfer printable transverse bulk acoustic wave filter comprises a piezoelectric filter element having a top side, a bottom side, a left side, and a right side disposed over a sacrificial portion on a source substrate. A top electrode is in contact with the top side and a bottom electrode is in contact with the bottom side. A left acoustic mirror is in contact with the left side and a right acoustic mirror is in contact with the right side. The thickness of the transverse bulk acoustic wave filter is substantially less than its length or width and its length can be greater than its width. The transverse bulk acoustic wave filter can be disposed on, and electrically connected to, a semiconductor substrate comprising an electronic circuit to control the transverse bulk acoustic wave filter and form a composite heterogeneous device that can be micro-transfer printed.
    Type: Grant
    Filed: June 30, 2017
    Date of Patent: July 23, 2019
    Assignee: X-Celeprint Limited
    Inventors: Christopher Bower, Matthew Meitl, Ronald S. Cok, Robert R. Rotzoll
  • Patent number: 10361124
    Abstract: The disclosed technology relates generally to methods and systems for controlling the release of micro devices. Prior to transferring micro devices to a destination substrate, a native substrate is formed with micro devices thereon. The micro devices can be distributed over the native substrate and spatially separated from each other by an anchor structure. The anchors are physically connected/secured to the native substrate. Tethers physically secure each micro device to one or more anchors, thereby suspending the micro device above the native substrate. In certain embodiments, single tether designs are used to control the relaxation of built-in stress in releasable structures on a substrate, such as Si (1 0 0). Single tether designs offer, among other things, the added benefit of easier break upon retrieval from native substrate in micro assembly processes. In certain embodiments, narrow tether designs are used to avoid pinning of the undercut etch front.
    Type: Grant
    Filed: February 9, 2018
    Date of Patent: July 23, 2019
    Assignee: X-Celeprint Limited
    Inventors: Christopher Bower, Matthew Meitl
  • Patent number: 10361180
    Abstract: Provided are optical devices and systems fabricated, at least in part, via printing-based assembly and integration of device components. In specific embodiments the present invention provides light emitting systems, light collecting systems, light sensing systems and photovoltaic systems comprising printable semiconductor elements, including large area, high performance macroelectronic devices. Optical systems of the present invention comprise semiconductor elements assembled, organized and/or integrated with other device components via printing techniques that exhibit performance characteristics and functionality comparable to single crystalline semiconductor based devices fabricated using conventional high temperature processing methods. Optical systems of the present invention have device geometries and configurations, such as form factors, component densities, and component positions, accessed by printing that provide a range of useful device functionalities.
    Type: Grant
    Filed: January 10, 2017
    Date of Patent: July 23, 2019
    Assignees: The Board of Trustees of the University of Illinois, X-Celeprint Limited
    Inventors: John Rogers, Ralph Nuzzo, Matthew Meitl, Etienne Menard, Alfred Baca, Michael Motala, Jong-Hyun Ahn, Sang-Il Park, Chang-Jae Yu, Heung Cho Ko, Mark Stoykovich, Jongseung Yoon
  • Publication number: 20190221552
    Abstract: A method of making a micro-transfer printed system includes providing a source wafer having a plurality of micro-transfer printable source devices arranged at a source spatial density; providing an intermediate wafer having a plurality of micro-transfer printable intermediate supports arranged at an intermediate spatial density less than or equal to the source spatial density; providing a destination substrate; micro-transfer printing the source devices from the source wafer to the intermediate supports of the intermediate wafer with a source stamp having a plurality of posts at a source transfer density to make an intermediate device on each intermediate support; and micro-transfer printing the intermediate devices from the intermediate wafer to the destination substrate at a destination spatial density less than the source spatial density with an intermediate stamp having a plurality of posts at an intermediate transfer density less than the source transfer density.
    Type: Application
    Filed: December 20, 2018
    Publication date: July 18, 2019
    Inventors: Christopher Bower, Matthew Meitl
  • Patent number: 10355113
    Abstract: In an aspect, the present invention provides stretchable, and optionally printable, components such as semiconductors and electronic circuits capable of providing good performance when stretched, compressed, flexed or otherwise deformed, and related methods of making or tuning such stretchable components. Stretchable semiconductors and electronic circuits preferred for some applications are flexible, in addition to being stretchable, and thus are capable of significant elongation, flexing, bending or other deformation along one or more axes. Further, stretchable semiconductors and electronic circuits of the present invention are adapted to a wide range of device configurations to provide fully flexible electronic and optoelectronic devices.
    Type: Grant
    Filed: March 29, 2016
    Date of Patent: July 16, 2019
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: John A. Rogers, Matthew Meitl, Yugang Sun, Heung Cho Ko, Andrew Carlson, Won Mook Choi, Mark Stoykovich, Hanqing Jiang, Yonggang Huang, Ralph G. Nuzzo, Zhengtao Zhu, Etienne Menard, Dahl-Young Khang
  • Patent number: 10347168
    Abstract: A high-resolution display includes a display substrate having an array of light-emitting display pixels disposed thereon for displaying an image comprising an array of image pixels. The total number of display pixels in the array of light-emitting display pixels is less than and evenly divides the total number of image pixels in the image in at least one dimension. An actuator physically moves a display substrate and light-emitting display pixels in one or two dimensions in a direction parallel to a surface of the display substrate. A controller controls the light-emitting operation of display pixels and controls physical location of the display pixels. In some embodiments, a controller controls an actuator to spatially interpolate the spatial location of display pixels at successive times and controls the light-emitting operation of display pixels to display a different subset of the image pixels at each successive time.
    Type: Grant
    Filed: November 9, 2017
    Date of Patent: July 9, 2019
    Assignee: X-Celeprint Limited
    Inventors: Matthew Meitl, Ronald S. Cok, Christopher Bower
  • Patent number: 10347535
    Abstract: The disclosed technology relates generally to methods and systems for controlling the release of micro devices. Prior to transferring micro devices to a destination substrate, a native substrate is formed with micro devices thereon. The micro devices can be distributed over the native substrate and spatially separated from each other by an anchor structure. The anchors are physically connected/secured to the native substrate. Tethers physically secure each micro device to one or more anchors, thereby suspending the micro device above the native substrate. In certain embodiments, single tether designs are used to control the relaxation of built-in stress in releasable structures on a substrate, such as Si (1 1 1). Single tether designs offer, among other things, the added benefit of easier break upon retrieval from native substrate in micro assembly processes. In certain embodiments, narrow tether designs are used to avoid pinning of the undercut etch front.
    Type: Grant
    Filed: March 2, 2018
    Date of Patent: July 9, 2019
    Assignee: X-Celeprint Limited
    Inventors: Christopher Bower, Matthew Meitl
  • Patent number: 10312405
    Abstract: The disclosed technology relates generally to a method and system for micro assembling GaN materials and devices to form displays and lighting components that use arrays of small LEDs and high-power, high-voltage, and or high frequency transistors and diodes. GaN materials and devices can be formed from epitaxy on sapphire, silicon carbide, gallium nitride, aluminum nitride, or silicon substrates. The disclosed technology provides systems and methods for preparing GaN materials and devices at least partially formed on several of those native substrates for micro assembly.
    Type: Grant
    Filed: May 1, 2018
    Date of Patent: June 4, 2019
    Assignee: X-Celeprint Limited
    Inventors: Christopher Bower, Matthew Meitl
  • Publication number: 20190157532
    Abstract: A transfer print structure comprises a destination substrate having a substrate surface and one or more substrate conductors disposed on or in the destination substrate. One or more interconnect structures are disposed on and protrude from the destination substrate in a direction orthogonal to the substrate surface. Each interconnect structure comprises one or more notches, each notch having an opening on an edge of the interconnect structure and extending at least partially through the interconnect structure in a direction parallel to the substrate surface from the edge and a notch conductor disposed at least partially in the notch and electrically connected to one of the substrate conductors. In some embodiments, an electronic component comprising connection posts is transfer printed into electrical contact with a corresponding notch conductor by laterally moving the electrical component over the substrate surface to electrically contact the connection post to the notch conductor.
    Type: Application
    Filed: November 9, 2018
    Publication date: May 23, 2019
    Inventors: Matthew Meitl, Tanya Yvette Moore, Ronald S. Cok, Salvatore Bonafede, Brook Raymond, Christopher Andrew Bower, Carl Ray Prevatte, JR.
  • Publication number: 20190157563
    Abstract: An organic light-emitting diode (OLED) structure includes an organic light-emitting diode having a first electrode, one or more layers of organic material disposed on at least a portion of the first electrode, and a second electrode disposed on at least a portion of the one or more layers of organic material. At least a portion of a tether extending from a periphery of the organic light-emitting diode. The organic light-emitting diodes can be printable organic light-emitting diode structures that are micro transfer printed over a display substrate to form a display.
    Type: Application
    Filed: January 23, 2019
    Publication date: May 23, 2019
    Applicant: X-Celeprint Limited
    Inventors: Christopher Bower, Matthew Meitl, Ronald S. Cok
  • Patent number: 10297585
    Abstract: A compound micro-assembled device comprises a device substrate. A first component having a first native resolution and a second component having a second native resolution different from the first native resolution are both disposed on the device substrate. The device substrate can comprise a device circuit having a native resolution different from or less than the first and second native resolutions. One or more device interconnections electrically connect the first component to the second component or to the device circuit. In certain embodiments, the first component or the second component can be micro-transfer printed onto the device substrate. In certain embodiments, the compound micro-assembled device can be micro-transfer printed onto a destination substrate or the compound micro-assembled device can comprise a destination substrate onto which the device substrate is micro-transfer printed.
    Type: Grant
    Filed: December 21, 2017
    Date of Patent: May 21, 2019
    Assignee: X-Celeprint Limited
    Inventors: Christopher Andrew Bower, Matthew Meitl, Ronald S. Cok
  • Publication number: 20190148598
    Abstract: The disclosed technology provides micro-assembled micro-LED displays and lighting elements using arrays of micro-LEDs that are too small (e.g., micro-LEDs with a width or diameter of 10 ?m to 50 ?m), numerous, or fragile to assemble by conventional means. The disclosed technology provides for micro-LED displays and lighting elements assembled using micro-transfer printing technology. The micro-LEDs can be prepared on a native substrate and printed to a display substrate (e.g., plastic, metal, glass, or other materials), thereby obviating the manufacture of the micro-LEDs on the display substrate. In certain embodiments, the display substrate is transparent and/or flexible.
    Type: Application
    Filed: January 10, 2019
    Publication date: May 16, 2019
    Inventors: Christopher Bower, Matthew Meitl, David Gomez, Salvatore Bonafede, David Kneeburg, Alin Fecioru, Carl Prevatte, JR.
  • Publication number: 20190123719
    Abstract: A compound acoustic wave filter device comprises a support substrate having an including two or more circuit connection pads. An acoustic wave filter includes a piezoelectric filter element and two or more electrodes. The acoustic wave filter is micro-transfer printed onto the support substrate. An electrical conductor electrically connects one or more of the circuit connection pads to one or more of the electrodes.
    Type: Application
    Filed: December 20, 2018
    Publication date: April 25, 2019
    Inventors: Christopher Bower, Matthew Meitl, Ronald S. Cok